首页> 美国政府科技报告 >A Class of Upper Bounds on Probability of Error for Multi-Hypotheses Pattern Recognition
【24h】

A Class of Upper Bounds on Probability of Error for Multi-Hypotheses Pattern Recognition

机译:多假设模式识别的一类上界误差概率

获取原文

摘要

A class of upper bounds on the probability of error for the general multi-hypotheses pattern recognition problem is obtained. In particular, an upper bound in the class is shown to be a linear functional of the pairwise Bhattacharya coefficients. Evaluation of the bounds requires knowledge of a priori probabilities and of the hypothesis-conditional probability density functions. A further bound is obtained that is independent of a priori probabilities. For the case of unknown a priori probabilities and conditional probability densities, an estimate of the latter upper bound is derived using a sequence of classified samples and Kernel functions to destimate the unknown densities. (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号