首页> 美国政府科技报告 >On the Relative Importance of the Driving Forces of Plate Motion.
【24h】

On the Relative Importance of the Driving Forces of Plate Motion.

机译:板块运动的力量。

获取原文

摘要

A number of possible mechanisms have recently been proposed for driving the motions of the lithospheric plates, such as pushing from mid-ocean ridges, pulling by downgoing slabs, suction toward trenches, and coupling of the plates to flow in the mantle. This paper advances a new observational method of testing theories of the driving mechanism. The basic approach is to solve the inverse problem of determining the relative strength of the plausible driving forces, given the observed motions and geometries of the lithospheric plates. Since the inertia of the plates is negligible, each plate must be dynamic equilibrium, so that the sum of the torques acting on a plate must be zero. Thus, the problem is to determine the relative sizes of the forces that minimize the components of net torque on each plate. The results indicate that the forces acting on the downgoing slab control the velocity of the oceanic plates and are an order of magnitude stronger than any other force. Namely, all the oceanic plates attached to substantial amounts of downgoing slabs move with a terminal velocity at which the gravitational body force pulling the slabs downward is nearly balanced with the resistance acting on the slab; regardless of the other features of the trailing horizontal part of the plates. The drag on the bottom of the plates which resist motion is stronger under the continents than under the oceans.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号