首页> 美国政府科技报告 >Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control.
【24h】

Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control.

机译:用于低电湿度控制的太阳能液体干燥剂空调器。

获取原文

摘要

Today's air-conditioning (AC) technology is primarily based on direct expansion (DX) or the refrigeration process. It is so prevalent that it is considered a necessity for the majority of buildings throughout the United States. DX AC has been optimized for cost and thermodynamic efficiency, both of which are nearing their practical limits. In hot, humid climates, conventional AC units expend excess energy to sensibly overcool the air for dehumidification. As a result, excess energy must be used to reheat the air to a more comfortable supply temperature (overcool/reheat cycle). The use of desiccant-based AC systems decouples the latent and sensible loads of an airstream, enabling higher efficiency cooling and improved thermal comfort conditions. The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), Florida. The new type of LDAC invented by AIL Research (AILR) has higher thermal efficiency than any other LDAC on the market today. The technology was recently invented, and only six active units were operating at the time of this report. This was the first solar-powered demonstration of the technology. The goal of the project was to quantify energy and water consumption, solar energy utilization, and cost savings relative to DX air conditioners. The LDAC system that was installed at Tyndall AFB was a pre-commercial technology, and given that it was the first solar-powered demonstration, a fundamental objective of the demonstration was to evaluate system performance and use the lessons learned to develop design/manufacturing guidance for future commercial LDAC systems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号