首页> 美国政府科技报告 >An Algorithm for Linearly Constrained Nonlinear Programming Problems
【24h】

An Algorithm for Linearly Constrained Nonlinear Programming Problems

机译:线性约束非线性规划问题的一种算法

获取原文

摘要

In this paper an algorithm for solving a linearly constrained nonlinear programming problem is developed. Given a feasible point, a correction vector is computed by solving a least distance programming problem over a polyhedral cone defined in terms of the gradients of the 'almost' binding constraints. Mukai's approximate scheme for computing step sizes is generalized to handle the constraints. This scheme provides as estimate for the step size based on a quadratic approximation of the function. This estimate is used in conjunction with Armijo line search to calculate a new point. It is shown that each accumulation point is a Kuhn-Tucker point to a slight perturbation of the original problem. Furthermore, under suitable second order optimality conditions, it is shown that eventually only one trial is needed to compute the step size. (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号