首页> 美国政府科技报告 >Weighted L-Squared Quantile Distance Estimators for Randomly Censored Data
【24h】

Weighted L-Squared Quantile Distance Estimators for Randomly Censored Data

机译:随机删失数据的加权L平方量角度距离估计

获取原文

摘要

The asymptotic properties of a family of minimum quantile function distance estimators for randomly censored data sets are considered. These procedures produce an estimator of the parameter vector that minimizes a weighted L squared distance measure between the Kaplan-Meier quantile function and an assumed parametric family of quantile functions. Regularity conditions are provided which insure that these estimators are consistent and asymptotically normal. An optimal weight function is derived for single parameter families, which, for location/scale families, results in censored sample analogs of estimators such as those suggested by Parzen (1979a, 1979b), and Weiss and Wolfowitz (1970).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号