首页> 美国政府科技报告 >Mathematical Modeling of Black-and-White Chromogenic Image Stability.
【24h】

Mathematical Modeling of Black-and-White Chromogenic Image Stability.

机译:黑白显色图像稳定性的数学模型。

获取原文

摘要

Agfapan Vario-XL film was faded at various levels of temperature, humidity, light, and fade time to determine the mathematical relationships of these variables and to examine whether interaction occurs between each factor. Light stability of the film was measured, and the Arrhenius relationship was used to predict dark stability at ambient storage conditions. It was found that the amount of fade, as measured as either a change in transmittance or density, could be mathematically modeled with a high degree of correlation. Each independent variable (temperature, humidity, and time) was interactive with the other two variables. Under the specific conditions tested, a significant interaction existed between light and dark fading reactions. For example, both the light and dark cyan dye reactions inhibit each other. However, in the case of the magenta and yellow dyes, a synergistic, or catalytic, effect occurs when light fading precedes dark fading. Agfapan Vario-XL is extremely light stable when irradiated by a conventional enlarger light source. The dark stability compares with some of the least stable chromogenic print films -- a 10% loss in printing density is predicted by Arrhenius extrapolation when the Agfapan Vario-XL is stored at room temperature at 45% relative humidity for five years.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号