首页> 美国政府科技报告 >Using QR Factorization for Real-Time Anomaly Detection in Hyperspectral Images.
【24h】

Using QR Factorization for Real-Time Anomaly Detection in Hyperspectral Images.

机译:利用QR分解进行高光谱图像的实时异常检测。

获取原文

摘要

Anomaly detection has been used successfully on hyperspectral images for over a decade. However, there is an ever increasing need for real-time anomaly detectors. Historically, anomaly detection methods have focused on analysis after the entire image has been collected. As useful as post- collection anomaly detection is, there is a great advantage to detecting an anomaly as it is being collected. This research is focused on speeding up the process of detection for a pre-existing method, Linear RX, which is a variation on the traditional Reed-Xiaoli detector. By speeding up the process of detection, it is possible to create a real-time anomaly detector. The window covariance matrix is our main area focus for speed improvement. Several methods were investigated, including QR factorization and tracking the change in the window covariance matrix as it moves through the image. Finally, performance comparisons are made to the original Linear RX detector.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号