首页> 美国政府科技报告 >Cyberspace and Real-World Behavioral Relationships: Towards the Applications of Interest Search Queries to Identify Individuals At-Risk for Suicide.
【24h】

Cyberspace and Real-World Behavioral Relationships: Towards the Applications of Interest Search Queries to Identify Individuals At-Risk for Suicide.

机译:网络空间和现实世界的行为关系:寻求利益搜索查询的应用,以识别面临自杀风险的个人。

获取原文

摘要

The Internet has become an integral and pervasive aspect of society. Not surprisingly, the growth of ecommerce has led to focused research on identifying relationships between user behavior in cyberspace and the real world - retailers are tracking items customers are viewing and purchasing in order to recommend additional products and to better direct advertising. As the relationship between online search patterns and real-world behavior becomes more understood, the practice is likely to expand to other applications. Indeed, Google Flu Trends has implemented an algorithm that accurately charts the relationship between the number of people searching for flu-related topics on the Internet, and the number of people who actually have flu symptoms in that region. Because the results are real-time, studies show Google Flu Trends estimates are typically two weeks ahead of the Center for Disease Control. The Air Force has devoted considerable resources to suicide awareness and prevention. Despite these efforts, suicide rates have remained largely unaffected. The Air Force Suicide Prevention Program assists family, friends, and co-workers of airmen in recognizing and discussing behavioral changes with at-risk individuals. Based on other successes in correlating behaviors in cyberspace and the real world, is it possible to leverage online activities to help identify individuals that exhibit suicidal or depression-related symptoms. This research explores the notion of using Internet search queries to classify individuals with common search patterns. Text mining was performed on user search histories for a one-month period from nine Air Force installations. The search histories were clustered based on search term probabilities, providing the ability to identify relationships between individuals searching for common terms. Analysis was then performed to identify relationships between individuals searching for key terms associated with suicide, anxiety, and post-traumatic stress.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号