首页> 美国政府科技报告 >Resonant Excitation of Hemispheric Barotropic Instability in the Winter Mesosphere
【24h】

Resonant Excitation of Hemispheric Barotropic Instability in the Winter Mesosphere

机译:冬季中层球半球正压不稳定性的共振激发

获取原文

摘要

The subtropical mesospheric jet observed by the Nimbus 7 Limb Infrared Monitor of the Stratosphere in late 1978 was flanked to the north and south by regions of reversed potential vorticity gradient. In mid-December, enhanced planetary wave activity propagating upward into the mesosphere led to visible overreflection from the low-latitude reversed gradient region and rapid deceleration of the jet. It is argued, first, that the overreflection visible in the geopotential height field was probably genuine, and not likely to have been due to Rossby waves incident on an inertially unstable region. Nor was it due to the opposing mean meridional circulation. Second, the observed dominance of wave 1 in the overreflected flux may have been attributable to hemispheric barotropic instability: a low-wavenumber type of instability on the sphere related to the midlatitude modes discovered by Hartmann. In comparison to the barotropically unstable eigenmodes for higher zonal wavenumbers, the wave 1 mode has a slower growth rate but larger spatial extent. For practical purposes, it is a radiating mode excitable by sources in the far field. Equally important, the phase speed of the eigenmodes can be made exactly zero when the mean flow vanishes just within this region, as observed in mid-December 1978. Resonant excitation is therefore possible. Realistic opposing mean meridional advection has only a slight effect on the barotropic eigenmode, provided that high-wavenumber oscillations are filtered out of the calculation, acting to reduce the growth rate and shift the subtropical secondary amplitude maximum a few degrees towards the pole.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号