首页> 美国政府科技报告 >ARMA (Autoregressive Moving Average) Estimators of Probability Densities with Exponential or Regularly Varying Fourier Coefficients
【24h】

ARMA (Autoregressive Moving Average) Estimators of Probability Densities with Exponential or Regularly Varying Fourier Coefficients

机译:aRma(自回归滑动平均)具有指数或经常变化的傅里叶系数的概率密度估计

获取原文

摘要

Properties of a probability density estimator having the rational form of a ARMA spectrum are investigated. Under various conditions on the underlying density's Fourier coefficients, the ARMA estimator is shown to have asymptotically smaller mean integrated squared error (MISE) than the best window-type Fourier series estimator. The most interesting cases are those in which the Fourier coefficients are regularly varying with index-p,p > 1/2. For example, when p=2 the asymptotic MISE of a certain ARMA estimator is only about 75% of that for the optimum window estimator. For a density f with support in 0, PI, the condition p=2 occurs whenever f'(0+) does not equal to 0, f' (pi-) =0, and f is square integrable. Keywords: Generalized jackknife; Regularly varying function.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号