首页> 美国政府科技报告 >Application of Cholesky-Like Matrix Decomposition Methods to the Evaluation of Atomic Orbital Integrals and Integral Derivatives
【24h】

Application of Cholesky-Like Matrix Decomposition Methods to the Evaluation of Atomic Orbital Integrals and Integral Derivatives

机译:类Cholesky矩阵分解方法在原子轨道积分和积分导数评估中的应用

获取原文

摘要

When viewed as a square two-indexed matrix, the array of atomic orbital based, two-electron integrals (ij/kl) is a positive semidefinite array. Beebe and Linderberg showed, in 1977, that actual or near linear dependencies often exist within the types of atomic orbital basis sets employed in conventional quantum chemical calculations. In fact, large (i.e., higher quality) bases were shown to be substantially more redundant than smaller or more spatially separated bases. In situations where these exists significant basis near redundancy, the rank (r) of the ij/kl) = V sub I, J matrix of integrals will be significantly smaller than the matrix dimension M. (kr)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号