首页> 美国政府科技报告 >Interaction of Atomic Hydrogen with Pico- and Femtosecond Laser Pulses.
【24h】

Interaction of Atomic Hydrogen with Pico- and Femtosecond Laser Pulses.

机译:原子氢与皮微飞秒和飞秒激光脉冲的相互作用。

获取原文

摘要

This thesis presents a theoretical study of the interaction of atomic hydrogen with coherent laser pulses in the 5 femtosecond to 10 picosecond range, in the weak-field limit, and in intense fields. We approach the problem in the weak-field limit by studying the relationship between the Fourier relation of the laser pulse (Delta omega Delta t) and the (Delta E Delta t) relation of the atomic Rydberg wave packet generated by the laser pulse. A derivation of the wave packet based on the WKB approximation is given, permitting the quantity Delta t to be derived for the quantum state, with the conclusion that under certain circumstances a transform-limited laser pulse (satisfying Delta omega Delta t = 1/2) can generate a transform-limited electron (satisfying Delta E Delta t/h = 1/2). A population-trapping effect is found numerically and modeled theoretically. Despite the high field intensities, population representing the excited electron is recaptured from the ionization continuum by bound states during the excitation. Population returns to the atom with just the right phase to strongly inhibit ionization. A theory is presented that models this effect for a variety of laser pulse shapes, with and without the rotating-wave approximation. The numerical integration reveals that a certain amount of above-threshold ionization (ATI) occurs. (aw)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号