首页> 美国政府科技报告 >Modeling Biomolecular-Surface Nonbonded Interactions: Application to Nucleobase Adsorption on Single-Wall Carbon Nanotube Surfaces.
【24h】

Modeling Biomolecular-Surface Nonbonded Interactions: Application to Nucleobase Adsorption on Single-Wall Carbon Nanotube Surfaces.

机译:生物分子 - 表面非键合相互作用的建模:在单壁碳纳米管表面上对核碱基吸附的应用。

获取原文

摘要

In this work we explored the selectivity of single nucleobases towards adsorption on chiral single-wall carbon nanotubes (SWCNTs) by density functional theory calculations. Specifically, the adsorption of molecular models of guanine (G), adenine (A), thymine (T),and cytosine (C), as well as of AT and GC Watson-Crick (WC) base pairs on chiral SWCNT C(6, 5), C(9, 1) and C(8, 3) model structures, was analyzed in detail. The importance of correcting the exchange-correlation functional for London dispersion was clearly demonstrated, yet limitations in modeling such interactions by considering the SWCNT as a molecular model may mask subtle effects in a molecular/macroscopic material system. The trend in the calculated adsorption energies of the nucleobases on same diameter C(6, 5) and C(9, 1) SWCNT surfaces, i.e. G > A > T > C, was consistent with related computations and experimental work on graphitic surfaces, however contradicting experimental data on the adsorption of single- strand short homo-oligonucleotides on SWCNTs that demonstrated a trend of G > C > A > T (Albertorio et al 2009 Nanotechnology 20 395101). A possible role of electrostatic interactions in this case was partially captured by applying the effective fragment potential method, emphasizing that the interplay of the various contributions in modeling nonbonded interactions is complicated by theoretical limitations. Finally, because the calculated adsorption energies for Watson-Crick base pairs have shown little effect upon adsorption of the base pair farther from the surface, the results on SWCNT sorting by salmon genomic DNA could be indicative of partial unfolding of the double helix upon adsorption on the SWCNT surface.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号