首页> 美国政府科技报告 >Adaptive Bandwidth Choice for Kernel Regression
【24h】

Adaptive Bandwidth Choice for Kernel Regression

机译:核回归的自适应带宽选择

获取原文

摘要

A data-based procedure is introduced for local bandwidth selection for kernelestimation of a regression function at a point. The estimated bandwidth is shown to be consistent and asymptotically normal as an estimator of the (asymptotic) optimal value for minimum mean square estimation. The rate of convergence is identical to that of plug-in bandwidth estimators. The proposed method has the practical advantage that it reduces the need for a priori values and does not require pilot estimates of the regression function, optimization of estimated objective functions or resampling. A small Monte Carlo study is used to examine the behavior of the new bandwidth estimator in a variety of situations. The resulting finite-sample mean square errors of the corresponding curve estimates are generally found to be less than or equal to those of an idealized plug-in estimator. Keywords: Curve estimation, Nonparametric regression, Smoothing. (kr)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号