首页> 美国政府科技报告 >Goodness of Fit Tests for Spectral Distributions
【24h】

Goodness of Fit Tests for Spectral Distributions

机译:光谱分布的拟合优度测试

获取原文

摘要

The spectral distribution function of a stationary stochastic processstandardized by dividing by the variance of the process is a linear function of the autocorrelations. The integral of the sample standardized spectral density (periodogram) is a similar linear function of the autocorrelations. As the sample size increases, the difference of these two functions multiplied by the square root of the sample size converges weakly to a Gaussian stochastic process with a continuous time parameter. A monotonic transformation of this parameter yields a Brownian bridge plus an independent random term. The distributions of functionals of this process are the limiting distributions of goodness of fit criteria that are used for testing hypotheses about the process autocorrelations. An application is to tests of independence (flat spectrum). The characteristic function of the Cramer-von Miese statistic is obtained; inequalities for the Kolmogorow-Smirnov criterion are given. Confidence regions for unspecified process distributions are found.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号