首页> 美国政府科技报告 >Electron Recirculation in Electrostatic Multicusp Systems: II - SystemPerformance Scaling of One-Dimensional 'Rollover' Wells
【24h】

Electron Recirculation in Electrostatic Multicusp Systems: II - SystemPerformance Scaling of One-Dimensional 'Rollover' Wells

机译:静电多组分系统中的电子再循环:II - 一维“翻转”井的系统性能缩放

获取原文

摘要

In an earlier paper a comprehensive study was made of the recirculation andlosses of electrons in their flow through simple inverse power-law potential wells bounded by similarly inverse power-law dependent magnetic fields. This study examined electron flow and loss behavior in the simplest approximation invoked to describe Polywell confinement systems. The importance of this study, and of the present paper, is that the power balance in Polywell systems is determined entirely by the rate of electron losses; if these are large, then the system can not yield net power. Thus it is of interest to determine those conditions that results in small losses, and to design experiments and systems to attempt to achieve and operate at these most favorable conditions, in order to test and prove the efficacy of the system for the generation of net power from fusion reactions. The outline and summary of this problem presented is generally repeated here, with some modifications to clarify particular physics issues of most concern, in order to avoid having to refer to the earlier document for this general description. As noted, a large body of work has been undertaken over the past 35 or so years in the study of general cusp confinement of plasmas. Nearly all of this has examined single particle electron (or ion) motion or the motion of particles in neutral plasmas within cusped magnetic systems, generally without internal electric potential fields.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号