首页> 美国政府科技报告 >Rational Behavior Model: A Multi-Paradigm, Tri-Level Software Architecture forthe Control of Autonomous Vehicles
【24h】

Rational Behavior Model: A Multi-Paradigm, Tri-Level Software Architecture forthe Control of Autonomous Vehicles

机译:理性行为模型:一种控制自主车辆的多范式三级软件体系结构

获取原文

摘要

There is currently a very strong interest among researchers in the fields ofartificial intelligence and robotics in finding more effective means of linking high level symbolic computations relating to mission planning and control for autonomous vehicles to low level vehicle control software. The diversity exhibited by the many processes involved in such control has resulted in a number of proposals for a general software architecture intended to provide an efficient yet flexible framework for the organization and interaction of relevant software components. The Rational Behavior Model (RBM) has been developed with these requirements in mind and consists of three levels, called the Strategic, the Tactical, and the Execution levels, respectively. Each level reflects computations supporting the solution to the global control problem based on different abstraction mechanisms. The unique contribution of the RBM architecture is the idea of specifying different programming paradigms to realize each software level. Specifically, RBM uses rule-based programming for the Strategic level, thereby permitting field reconfiguration of missions by a mission specialist without reprogramming at lower levels. The Tactical level realizes vehicle behaviors as the methods of software objects programmed in an object-based language such as Ada. These behaviors are initiated by rule satisfaction at the Strategic level, thereby rationalizing their interaction. The Execution level is programmed in any imperative language capable of supporting efficient execution of real-time control of the underlying vehicle hardware. Autonomous vehicles, Autonomous mobile robots, Software architectures, Automated reasoning, Vehicle control software, Intelligent control systems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号