首页> 美国政府科技报告 >High-Accuracy Large-Vocabulary Speech Recognition Using Mixture Tying and Consistency Modeling.
【24h】

High-Accuracy Large-Vocabulary Speech Recognition Using Mixture Tying and Consistency Modeling.

机译:基于混合搭配和一致性建模的高精度大词汇量语音识别。

获取原文

摘要

Improved acoustic modeling can significantly decrease the error rate in large-vocabulary speech recognition. Our approach to the problem is twofold. We first propose a scheme that optimizes the degree of mixture tying for a given amount of training data and computational resources. Experimental results on the Wall Street Journal (WSJ) Corpus show that this new form of output distribution achieves a 25% reduction in error rate over typical tied- mixture systems. We then show that an additional improvement can be achieved by modeling local time correlation with linear discriminant features.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号