首页> 美国政府科技报告 >Detecting Simple Objects in RGB-D Data
【24h】

Detecting Simple Objects in RGB-D Data

机译:检测RGB-D数据中的简单对象

获取原文

摘要

In this paper we present an approach for detection of simple objects in RGB-D data. Object detection in cluttered indoors environments is an important perceptual capability of robotic systems required for object search and pick and deliver tasks. For long term autonomy robots should learn how objects look like and where they appear in an weakly supervised manner. In this work we exploit the depth information to provide evidence about occlusion boundaries and scale of the objects. The depth discontinuities along with image contours computed in the vicinity of the detection window boundary form an (em objectness) measure, which is used to train an SVM classifier. In the testing stage we exploit the knowledge of the actual size of the object to propose the scale of the detection window significantly pruning the number window candidates to be evaluated. We evaluate our approach for detecting simple objects on NYU RGB-D dataset, illustrate the effectiveness of our approach as well as difficulties with the standard evaluation methodologies.

著录项

  • 作者

    Kosecka, J; Zhou, X;

  • 作者单位
  • 年度 2013
  • 页码 1-9
  • 总页数 9
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工业技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号