首页> 外文期刊>Geometric and Functional Analysis >Disk-Like Surfaces of Section and Symplectic Capacities
【24h】

Disk-Like Surfaces of Section and Symplectic Capacities

机译:

获取原文

摘要

We prove that the cylindrical capacity of a dynamically convex domain in ({mathbb{R}}^{4}) agrees with the least symplectic area of a disk-like global surface of section of the Reeb flow on the boundary of the domain. Moreover, we prove the strong Viterbo conjecture for all convex domains in ({mathbb{R}}^{4}) which are sufficiently C3 close to the round ball. This generalizes a result of Abbondandolo-Bramham-Hryniewicz-Salomão establishing a systolic inequality for such domains.

著录项

  • 来源
    《Geometric and Functional Analysis》 |2024年第5期|1399-1459|共61页
  • 作者

    O. Edtmair;

  • 作者单位

    Department of Mathematics, University of California at Berkeley, Berkeley, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号