...
首页> 外文期刊>Physiological Reviews >Diffusion in brain extracellular space.
【24h】

Diffusion in brain extracellular space.

机译:脑细胞外空间的扩散。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix, and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is approximately 20% and the tortuosity is approximately 1.6 (i.e., free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge, and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases, and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties is valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain.
机译:大脑的细胞外空间(ECS)的扩散受到体积分数和曲折度的限制,并且经过修正的扩散方程表示大脑中许多分子的运输行为。与方程式的偏差揭示了通过细胞摄取,结合或其他机制,分子穿过血脑屏障的损失。早期扩散测量使用放射性标记的蔗糖和其他示踪剂。目前,实时离子电渗疗法(RTI)方法用于小离子,而集成光学成像(IOI)方法用于荧光大分子,包括葡聚糖或蛋白质。 ECS的理论模型和仿真研究了ECS几何形状的影响,死区微域的影响,细胞外基质以及大分子与ECS通道的相互作用。在正常脑组织中使用阳离子四甲基铵(TMA)的RTI方法进行的广泛实验研究表明,ECS的体积分数通常约为20%,曲折度约为1.6(即,TMA的自由扩散系数降低了2.6) ,尽管存在地区差异。这些参数在显影和老化过程中会发生变化。扩散特性已在几种干预措施中得到了表征,包括脑刺激,渗透攻击和敲除细胞外基质成分。在缺血期间,阿尔茨海默氏病和帕金森氏病模型以及人类神经胶质瘤中也进行了测量。总体而言,这些研究改善了我们的ECS结构概念以及神经胶质和细胞外基质在调节ECS微环境中的作用。对ECS扩散特性的了解在从理解突触外体积传输到将药物输送到大脑的范例的发展等各种背景下都是有价值的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号