...
首页> 外文期刊>Philosophical magazine: structure and properties of condensed matter >The Nobel Prize in Physics 2007: Giant Magnetoresistance. An idiosyncratic survey of spintronics from 1963 to the present: Peter Weinberger's contributions
【24h】

The Nobel Prize in Physics 2007: Giant Magnetoresistance. An idiosyncratic survey of spintronics from 1963 to the present: Peter Weinberger's contributions

机译:2007年诺贝尔物理学奖:巨磁阻。自1963年至今的自旋电子学特质研究:Peter Weinberger的贡献

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

While the twentieth century was dominated by advances in controlling electrical currents through the charge of the electron, aka electronics, the rapid developments since 1988 have lead to a control of currents through the spin of the electron, i.e., spintronics. The groundwork for this field comes from studies on metallic alloys and multilayers started in the early 1960s. Due to parallel developments in the growth of semiconductor heterostructures, e.g., molecular beam epitaxy, work on metallic layers rapidly advanced in the late 1970s and early 1980s. By 1988 groups lead by Fert and Grunberg were able to grow metallic multilayers which displayed the sought after effect; a small magnetic field was able to dramatically change the electric resistance of the structures. This led to an immediate explosion in activity in this area; so much so that the materials which display this effect were incorporated in the read-heads of hard disk drives of computers by 1997. I will focus on developments in three distinct time periods. The first was from 1988 to 1995 which was dominated by metallic multilayers which displayed giant magnetoresistance (GMR), the second from 1995 to 2000 when reproducible magnetic tunnel junctions (MTJs) were studied for their tunnelling magnetoresistance (TMR), and the third period from 2000 to 2005 in which the ideas of Berger and Slonczewski were realized on the back action of currents on the magnetic background of the materials doing the conducting, i.e., current induced magnetization switching (CIMS). The contributions of Peter Weinberger to these developments illustrate the broad range of his activities in spintronics, this field which is barely twenty years old.
机译:尽管通过电子,又称电子学的电荷控制电流的进步主导了20世纪,但自1988年以来的快速发展已导致通过电子自旋即自旋电子学的电流控制。该领域的基础来自于1960年代初期开始的金属合金和多层材料的研究。由于半导体异质结构生长的平行发展,例如分子束外延,在金属层上的工作在1970年代末和1980年代初迅速发展。到1988年,由Fert和Grunberg领导的小组已经能够生长出表现出所希望的效果的金属多层膜。很小的磁场就能显着改变结构的电阻。这导致该地区的活动立即爆炸。如此之多,以至于到1997年,显示这种效果的材料就被并入了计算机硬盘驱动器的读取头中。我将重点介绍三个不同时期的发展。第一个阶段是1988年至1995年,主要是金属层,表现出巨大的磁阻(GMR);第二个阶段是1995年至2000年,当时研究可再现的磁性隧道结(MTJ)的隧穿磁阻(TMR),第三阶段是在2000年至2005年间,Berger和Slonczewski的思想在电流对导电材料的磁性背景(即电流感应磁化开关(CIMS))的反作用下得以实现。彼得·温伯格(Peter Weinberger)对这些发展的贡献说明了他在自旋电子学领域的广泛活动,该领域才刚刚二十年。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号