...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Improving the accuracy of low level quantum chemical calculation for absorption energies: the genetic algorithm and neural network approach
【24h】

Improving the accuracy of low level quantum chemical calculation for absorption energies: the genetic algorithm and neural network approach

机译:提高吸收能的低级量子化学计算的准确性:遗传算法和神经网络方法

获取原文
获取原文并翻译 | 示例
           

摘要

The combination of genetic algorithm and back-propagation neural network correction approaches (GABP) has successfully improved the calculation accuracy of absorption energies. In this paper, the absorption energies of 160 organic molecules are corrected to test this method. Firstly, the GABP1 is introduced to determine the quantitative relationship between the experimental results and calculations obtained by using quantum chemical methods. After GABP1 correction, the root-mean-square (RMS) deviations of the calculated absorption energies reduce from 0.32, 0.95 and 0.46 eV to 0.14, 0.19 and 0.18 eV for B3LYP/6-31G(d), B3LYP/STO-3G and ZINDO methods, respectively. The corrected results of B3LYP/6-31G(d)-GABPl are in good agreement with experimental results. Then, the GABP2 is introduced to determine the quantitative relationship between the results of B3LYP/6-31G(d)-GABPl method and calculations of the low accuracy methods (B3LYP/STO-3G and ZINDO). After GABP2 correction, the RMS deviations of the calculated absorption energies reduce to 0.20 and 0.19 eV for B3LYP/STO-3G and ZINDO methods, respectively. The results show that the RMS deviations after GABP1 and GABP2 correction are similar for B3LYP/STO-3G and ZINDO methods. Thus, the B3LYP/6-31G(d)-GABPl is a better method to predict absorption energies and can be used as the approximation of experimental results where the experimental results are unknown or uncertain by experimental method. This method may be used for predicting absorption energies of larger organic molecules that are unavailable by experimental methods and by high-accuracy theoretical methods with larger basis sets. The performance of this method was demonstrated by application to the absorption energy of the aldehyde carbazole precursor.
机译:遗传算法与反向传播神经网络校正方法(GABP)的结合成功地提高了吸收能的计算精度。本文通过校正160种有机分子的吸收能来测试该方法。首先,引入GABP1来确定实验结果与通过量子化学方法获得的计算之间的定量关系。校正GABP1后,对于B3LYP / 6-31G(d),B3LYP / STO-3G和B3LYP / 6-31G(d),计算出的吸收能量的均方根(RMS)偏差从0.32、0.95和0.46 eV减小到0.14、0.19和0.18 eV。 ZINDO方法分别。 B3LYP / 6-31G(d)-GABP1的校正结果与实验结果非常吻合。然后,引入GABP2以确定B3LYP / 6-31G(d)-GABP1方法的结果与低精度方法(B3LYP / STO-3G和ZINDO)的计算之间的定量关系。经过GABP2校正后,对于B3LYP / STO-3G和ZINDO方法,计算得出的吸收能量的RMS偏差分别减小至0.20和0.19 eV。结果表明,对于B3LYP / STO-3G和ZINDO方法,GABP1和GABP2校正后的RMS偏差相似。因此,B3LYP / 6-31G(d)-GABP1是更好的预测吸收能的方法,可以用作实验结果的近似值,其中实验结果未知或不确定。该方法可用于预测较大的有机分子的吸收能,而这些较大的有机分子是通过实验方法以及具有较大基集的高精度理论方法无法获得的。通过将其应用于醛咔唑前体的吸收能证明了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号