首页> 外文期刊>Philosophical Magazine, A. Physics of condensed matter, defects and mechanical properties >Atomistic simulations of dislocation-interface interactions in the Cu-Ni multilayer system
【24h】

Atomistic simulations of dislocation-interface interactions in the Cu-Ni multilayer system

机译:Cu-Ni多层系统中位错-界面相互作用的原子模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Experimental results show that a nanolayered composite structure made of two kinds of metals strengthens dramatically as the layer thickness is reduced. In epitaxial systems, this strengthening has been attributed to the modulus, lattice parameter, gamma surface and slip-plane mismatches between adjacent layers. The modulus mismatch (the Koehler barrier) introduces a force between a dislocation and its image in the interface. The lattice parameter mismatch generates oscillating coherency stresses and van der Merwe misfit dislocations at or near the interfaces, which interact with mobile dislocations. The gamma surface (chemical) mismatch introduces a localized force on gliding dislocations due to cure energy changes at or near the interfaces. Slip-plane misorientations across the interfaces require mobile screw dislocations to cross-slip for slip transmission and other dislocations to leave a difference dislocation at the interface. In this paper, atomistic simulations using the embedded-atom method are used to study the four components of dislocation-interface interactions in epitaxial Cu-Ni multilayers in a systematic fashion. The interaction of misfit dislocations with mobile dislocations is modelled using continuum theory. In thick Cu-Ni bilayers, the Koehler barrier is almost independent of interface orientation and dislocation character and is equal to 0.01 mu-0.015 mu but, when the layer thickness is comparable with the core width of a dislocation, the Koehler barrier falls rapidly (from 0.01 mu at a wavelength of 10 nm to 0.004 mu at 1.75 nm). This behaviour is in accordance with available experimental observations in the literature on the yield of epitaxial Cu-Ni multilayered systems. The gamma surface mismatch or chemical strengthening component of the blocking strength of Cu-Ni interfaces to (a/2)[110] screw dislocations is 0.003 mu, a factor of three lower than the Koehler stress. Coherency stresses, apart from exerting direct forces on dislocations, alter the barrier strengths by three mechanisms: firstly, they reduce the density of van der Merwe misfit dislocations, secondly, they enhance the Koehler barrier by altering the elastic constants of both Cu and Ni and, thirdly, non-glide stress components change the core structure of gliding dislocations, thereby altering the Koehler barrier. Overall, the barrier strength of (111) interfaces is independent of the wavelength of the multilayer and about 0.02 mu up to the wavelength of lambda(c), the coherence wavelength limit. At Cu(001)-Ni(001) interfaces the total barrier strength decreases from a value of 0.02 mu at long wavelengths (lambda approximate to infinity) to about 0.01 mu at lambda = lambda(c), as considered by Rao et al. in 1995 in their yield stress model for Cu-Ni multilayered structures. Slip-plane misorientations provide powerful barriers to slip transmission. Even at a (111) twinned interface in a coherent Cu-Ni multilayer, screw dislocations cross-slip on to the interface rather than into Ni because the stacking-fault energy at the interface is lower than in Ni. The blocking strength of the same interface to 60 degrees dislocations (which must leave a step and a residual dislocation in the boundary) is very large, 0.03-0.04 mu. [References: 55]
机译:实验结果表明,由两种金属制成的纳米层复合结构会随着层厚度的减小而显着增强。在外延系统中,这种强化归因于相邻层之间的模量,晶格参数,γ表面和滑移面不匹配。模量不匹配(科勒壁垒)会在位错与其界面中的图像之间引入力。晶格参数不匹配会产生振荡相干应力,范德梅尔维在界面处或界面附近的位错会与移动位错相互作用。由于界面处或界面附近的固化能量变化,伽马表面(化学)不匹配会在滑动位错上引入局部力。跨界面的滑面错位要求可动螺钉错位交叉滑动以进行滑差传输,而其他错位则在界面处留下差异性错位。在本文中,使用嵌入式原子方法的原子模拟被用来系统地研究外延Cu-Ni多层膜中位错-界面相互作用的四个成分。错位错位与移动位错之间的相互作用是使用连续性理论建模的。在较厚的Cu-Ni双层中,Koehler势垒几乎与界面取向和位错特性无关,等于0.01μ-0.015μm,但是当层厚与位错的芯宽相当时,Koehler势垒迅速下降(波长为10纳米的0.01微米到1.75纳米的0.004微米)。该行为与文献中关于外延Cu-Ni多层体系的产率的现有实验观察结果一致。对于(a / 2)[110]螺丝位错,Cu-Ni界面的粘连强度的伽马表面失配或化学强化成分为0.003微米,比Koehler应力低三倍。相干应力除了在位错上施加直接力外,还通过三种机制改变势垒强度:首先,它们降低了范德莫尔错位错的密度;其次,它们通过改变Cu和Ni的弹性常数来增强Koehler势垒。第三,非滑动应力分量改变了滑动位错的核心结构,从而改变了科勒势垒。总体而言,(111)界面的势垒强度与多层膜的波长无关,并且直到λ(c)的波长(相干波长极限)为止约为0.02μ。如Rao等人所述,在Cu(001)-Ni(001)界面处,总的阻隔强度从长波长处的0.02μm值减小(λ近似于无穷大),到lambda = lambda(c)时约为0.01μm。 1995年在他们的Cu-Ni多层结构的屈服应力模型中的应用。滑动平面方向错误为滑动传递提供了强大的障碍。即使在相干的Cu-Ni多层膜中的(111)孪晶界面处,螺钉位错也能在界面上而不是在Ni上错位,因为界面处的堆垛层错能比Ni低。相同界面对60度位错(必须离开台阶并在边界中残留位错)的阻挡强度非常大,为0.03-0.04微米。 [参考:55]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号