首页> 外文期刊>Physical biology >Effects of 3D geometries on cellular gradient sensing and polarization
【24h】

Effects of 3D geometries on cellular gradient sensing and polarization

机译:3D几何形状对细胞梯度感应和极化的影响

获取原文
获取原文并翻译 | 示例
           

摘要

During cell migration, cells become polarized, change their shape, and move in response to various internal and external cues. Cell polarization is defined through the spatio-temporal organization of molecules such as PI3K or small GTPases, and is determined by intracellular signaling networks. It results in directional forces through actin polymerization and myosin contractions. Many existing mathematical models of cell polarization are formulated in terms of reaction-diffusion systems of interacting molecules, and are often defined in one or two spatial dimensions. In this paper, we introduce a 3Dreaction-diffusion model of interacting molecules in a single cell, and find that cell geometry has an important role affecting the capability of a cell to polarize, or change polarization when an external signal changes direction. Our results suggest a geometrical argument why more roundish cells can repolarize more effectively than cells which are elongated along the direction of the original stimulus, and thus enable roundish cells to turn faster, as has been observed in experiments. On the other hand, elongated cells preferentially polarize along their main axis even when a gradient stimulus appears from another direction. Furthermore, our 3D model can accurately capture the effect of binding and unbinding of important regulators of cell polarization to and from the cell membrane. This spatial separation of membrane and cytosol, not possible to capture in 1D or 2D models, leads to marked differences of our model from comparable lower-dimensional models.
机译:在细胞迁移过程中,细胞会极化,改变其形状,并响应各种内部和外部提示而移动。细胞极化是通过分子(如PI3K或小GTP酶)的时空组织来定义的,并由细胞内信号网络决定。它通过肌动蛋白聚合和肌球蛋白收缩产生定向力。许多现有的细胞极化数学模型是根据相互作用分子的反应扩散系统制定的,通常在一个或两个空间维度上定义。在本文中,我们介绍了单个细胞中相互作用分子的3D反应扩散模型,发现细胞几何形状对影响细胞极化或在外部信号改变方向时改变极化具有重要作用。我们的研究结果提出了一个几何学上的论证,为什么更多的圆形细胞比沿原始刺激方向拉长的细胞能更有效地重新极化,从而使圆形细胞能够更快地转向,如实验中所观察到的。另一方面,即使当梯度刺激从另一个方向出现时,伸长的细胞也优先沿着其主轴极化。此外,我们的3D模型可以准确地捕获重要的细胞极化调节剂与细胞膜之间的结合和解结合作用。在1D或2D模型中无法捕获的膜和胞质溶胶的这种空间分离导致我们的模型与可比较的低维模型存在明显差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号