...
首页> 外文期刊>Physics in medicine and biology. >Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters
【24h】

Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters

机译:肿瘤运动模拟精度对肺生物力学建模方法和参数的敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.
机译:基于有限元分析(FEA)的生物力学建模可用于预测肺呼吸运动。在此技术中,弹性模型和生物力学参数是确定建模精度的两个重要因素。我们系统地评估了肺和肺肿瘤生物力学建模方法及相关参数的效果,以提高肺肿瘤质心(TCM)位移的运动模拟的准确性。实验是用4维计算机断层扫描(4D-CT)进行的。进行了拟牛顿有限元分析,以模拟呼气末期(阶段50%)和其他呼吸阶段(0%,10%,20%,30%和40%)之间的肺及相关肿瘤移位。线性各向同性和非线性超弹性材料(包括新霍克可压缩的和未耦合的Mooney-Rivlin模型)均用于创建肺部和肿瘤的有限元模型(FEM)。肺表面位移矢量场(SDVFs)是通过使用非刚性恶魔配准算法将50%相CT配准到其他呼吸相而获得的。获得的SDVFs在有限元分析中用作肺表面位移的边界条件。对于这三种模型,在八名患者中评估了中医置换对肺和肿瘤生物力学参数的敏感性。通过最小化阶段50%和阶段0%之间的TCM运动模拟误差来估计患者特定的最佳参数。未耦合的Mooney-Rivlin材料模型显示出最高的TCM运动模拟精度。 Mooney-Rivlin材料模型沿左右方向,前后方向和上下方向的平均TCM运动模拟绝对误差分别为0.80 mm,0.86 mm和1.51 mm。所提出的策略提供了一种可靠的方法,可以评估FEM中特定于患者的生物力学参数,以进行肺肿瘤运动模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号