首页> 外文期刊>Parallel Processing Letters >Optimizing Weather Model Radiative Transfer Physics for Intel's Many Integrated Core (MIC) Architecture
【24h】

Optimizing Weather Model Radiative Transfer Physics for Intel's Many Integrated Core (MIC) Architecture

机译:针对英特尔的多核集成(MIC)架构优化天气模型辐射传递物理

获取原文
获取原文并翻译 | 示例
           

摘要

Large numerical weather prediction (NWP) codes such as the Weather Research and Forecast (WRF) model and the NOAA Nonhydrostatic Multiscale Model (NMM-B) port easily to Intel's Many Integrated Core (MIC) architecture. But for NWP to significantly realize MIC's one- to two-TFLOP/s peak computational power, we must expose and exploit thread and fine-grained (vector) parallelism while overcoming memory system bottlenecks that starve floating-point performance. We report on our work to improve the Rapid Radiative Transfer Model (RRTMG), responsible for 10-20 percent of total NMM-B run time. We isolated a standalone RRTMG benchmark code and workload from NMM-B and then analyzed performance using hardware performance counters and scaling studies. We restructured the code to improve vectorization, thread parallelism, locality, and thread contention. The restructured code ran three times faster than the original on MIC and, also importantly, 1.3x faster than the original on the host Xeon Sandybridge.
机译:大型数字天气预报(NWP)代码(例如天气研究和预报(WRF)模型和NOAA非静水多尺度模型(NMM-B))可轻松移植到英特尔的“多核集成”(MIC)架构。但是,为了使NWP能够显着实现MIC的一到两个TFLOP / s的峰值计算能力,我们必须公开并利用线程和细粒度(矢量)并行机制,同时克服导致浮点性能不足的内存系统瓶颈。我们报告了我们改进快速辐射传输模型(RRTMG)的工作,该模型占NMM-B总运行时间的10-20%。我们从NMM-B中分离了一个独立的RRTMG基准代码和工作负载,然后使用硬件性能计数器和扩展研究分析了性能。我们重组了代码,以改善矢量化,线程并行性,局部性和线程争用。重组后的代码运行速度比MIC上的原始代码快三倍,并且同样重要的是,比主机Xeon Sandybridge上的原始代码快1.3倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号