...
首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Optimizing Total Energy–Mass Flux (TEMF) Planetary Boundary Layer Scheme for Intel’s Many Integrated Core (MIC) Architecture
【24h】

Optimizing Total Energy–Mass Flux (TEMF) Planetary Boundary Layer Scheme for Intel’s Many Integrated Core (MIC) Architecture

机译:针对英特尔多集成核(MIC)架构优化总能量通量(TEMF)行星边界层方案

获取原文
获取原文并翻译 | 示例
           

摘要

In order to make use of the ever-improving microprocessor performance, the applications must be modified to take advantage of the parallelism of today’s microprocessors. One such application that needs to be modernized is the weather research and forecasting (WRF) model, which is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the total energy–mass flux (TEMF) that unifies turbulence and moist convection components produces a better result than other PBL schemes. Thus, we present our optimization results for the TEMF PBL scheme. Those optimizations included vectorization of the code to utilize multiple vector units inside each processor code. The optimizations improved the performance of the original TEMF code on Xeon Phi 7120P by a factor of . Furthermore, the same optimizations improved the performance of the TEMF on a dual socket configuration of eight-core Intel Xeon E5-2670 CPUs by a factor of compared to the original TEMF code.
机译:为了利用不断提高的微处理器性能,必须对应用程序进行修改以利用当今微处理器的并行性。其中一种需要现代化的应用是天气研究和预报(WRF)模型,该模型设计用于数值天气预报和大气研究。 WRF软件基础结构由几个组件组成,例如动态求解器和物理方案。数值模型用于解析大规模流动。但是,亚网格规模的参数化仅用于估算小规模的属性(例如边界层湍流和对流,云,辐射)。由于大气的复杂非线性特性,它们对分辨尺度有重大影响。对于多云的行星边界层(PBL),以逼真的方式参数化垂直湍流和次网格规模的凝结是基本的。与其他PBL方案相比,基于总能量-质量通量(TEMF)的参数化可统一湍流和湿对流分量,从而产生更好的结果。因此,我们提出了针对TEMF PBL方案的优化结果。这些优化包括代码的矢量化,以利用每个处理器代码内部的多个矢量单元。优化使Xeon Phi 7120P上原始TEMF代码的性能提高了两倍。此外,与原始TEMF代码相比,相同的优化还提高了八核Intel Xeon E5-2670 CPU双插槽配置上的TEMF性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号