...
首页> 外文期刊>Chemical and Biochemical Engineering Quarterly >Characterisation of an Adhesive-free Packaging System for Polymeric Microfluidic Biochemical Devices and Reactors
【24h】

Characterisation of an Adhesive-free Packaging System for Polymeric Microfluidic Biochemical Devices and Reactors

机译:聚合物微流体生化装置和反应器的无胶包装系统的特性

获取原文
获取原文并翻译 | 示例
           

摘要

The development of microfluidic devices is an iterative process that involves series of improvements, which can be costly and time consuming. We present a packaging system which makes use of an accessible rapid prototyping method, and facilitates the rapid and reliable implementation of polymeric microfluidic device designs. The packaging system uses a modular design and is based on an adhesive-free connection of a reusable and stiff polymeric interface plate with a disposable, soft microfluidic chip under compression. We characterised the system by numerically and experimentally studying the effect of compression and key dimensions on burst pressure and flow rate. All parts are fabricated with readily available low-cost materials and micro-milling technology. The presented approach is both facilitating and systematising the fabrication of devices with different degrees of complexity; keeping assembly and interconnection simple and straightforward. Furthermore, minimising the time between a design and a finished working prototype yields rapid verification of microfluidic design concepts and testing of assays. Several chip designs were fabricated, then growth of stem cells and hydrodynam-ic vertical flow focusing in a microfluidic device were realised using our approach. Our approach minimises the need for re-development and re-testing of interface components; reducing cost and time requirements.
机译:微流体装置的开发是一个迭代过程,涉及一系列改进,这可能既昂贵又耗时。我们提出了一种包装系统,该包装系统利用了可访问的快速原型制作方法,并有助于快速,可靠地实施聚合物微流体装置设计。该包装系统采用模块化设计,并且基于可重复使用的刚性聚合物界面板与压缩状态下的一次性软微流体芯片的无粘合剂连接。我们通过数值和实验研究压缩和关键尺寸对爆破压力和流速的影响来表征系统。所有零件均采用容易获得的低成本材料和微铣削技术制造。所提出的方法既促进了系统制造,又使系统具有不同程度的复杂度;使组装和互连简单明了。此外,将设计和完成工作的原型之间的时间减至最少,可以快速验证微流体设计概念并进行化验测试。制备了几种芯片设计,然后使用我们的方法实现了干细胞的生长和微流控设备中的流体动力学垂直流聚焦。我们的方法最大程度地减少了重新开发和重新测试接口组件的需求;降低成本和时间要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号