首页> 外文期刊>Sugaku expositions: A translation of Sugaku >GLOBALLY ANALYZABLE FUCHSIAN DIFFERENTIAL EQUATIONS
【24h】

GLOBALLY ANALYZABLE FUCHSIAN DIFFERENTIAL EQUATIONS

机译:全局可分析的夫氏微分方程

获取原文
获取原文并翻译 | 示例
       

摘要

1. Introduction In various fields in mathematics and physics, such as the theory of automorphic functions, transcendental number theory, algebraic geometry, differential geometry, representation theory of Lie groups and Lie algebras, mathematical physics, and of course analysis, Fuchsian ordinary differential equations play a basic role. About 150 years ago, Fuchs, Frobenius et al. constructed a general theory of Fuchsian ordinary differential equations. The theory consists of a local theory at a regular singular point and a global relation for the sum of characteristic exponents, which we call the Fuchs relation. However, after that it seems there has been no essential progress in the general theory of Fuchsian ordinary differential equations. In particular, we do not yet have a method of calculating global quantities such as monodromies and connection coefficients, unless some special conditions hold. Here by special conditions we mean that the Fuchsian ordinary differential equation is free of accessory parameters or has an integral representation of solutions, etc. For Fuchsian ordinary differential equations free of accessory parameters, Okubo [55], [56] gave a perspective of the study by supplying many excellent ideas. Along Okubo's line, Yokoyama [74], [29] found a way to obtain all Fuchsian ordinary differential equations free of accessory parameters and clarified the structure of the set of such equations. Yokoyama's result looks like a goal in this direction. At almost the same time, Katz [42] also obtained a similar result, which covers the exceptional cases in Yokoyama's result. Dettweiler and Reiter [13], [14] noticed the relation between Katz's theory and Okubo's theory, and recently Oshima [58] clarified the relation between Yokoyama's theory and Katz's theory.
机译:1.引言在数学和物理学的各个领域,例如自纯函数论,先验数论,代数几何,微分几何,李群和李代数的表示理论,数学物理学,当然还有分析,Fuchsian常微分方程起基本作用。大约150年前,Fuchs,Frobenius等人。构造了Fuchsian常微分方程的一般理论。该理论由规则奇点处的局部理论和特征指数之和的整体关系组成,我们称其为Fuchs关系。但是,此后,在Fuchsian常微分方程的一般理论中似乎没有实质性的进步。尤其是,除非有一些特殊条件,否则我们还没有一种计算整体量的方法,例如单调系数和连接系数。这里的特殊条件是指Fuchsian常微分方程没有辅助参数或具有解的积分表示等。对于Fuchsian常微分方程没有辅助参数,Okubo [55],[56]给出了通过提供许多出色的想法进行学习。 Yokuyama [74] [29]沿着大久保的观点找到了一种获取所有不带辅助参数的Fuchsian常微分方程的方法,并阐明了这类方程组的结构。横山的结果似乎是朝这个方向的目标。几乎同时,Katz [42]也获得了类似的结果,涵盖了横山结果中的特殊情况。 Dettweiler和Reiter [13] [14]注意到卡兹理论和大久保理论之间的关系,最近大岛[58]澄清了横山理论与卡兹理论之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号