首页> 外文期刊>Studia Logica >Are There Enough Injective Sets?
【24h】

Are There Enough Injective Sets?

机译:有足够的内射集吗?

获取原文
获取原文并翻译 | 示例
           

摘要

The axiom of choice ensures precisely that, in ZFC, every set is projective: that is, a projective object in the category of sets. In constructive ZF (CZF) the existence of enough projective sets has been discussed as an additional axiom taken from the interpretation of CZF in Martin-L?f's intuitionistic type theory. On the other hand, every non-empty set is injective in classical ZF, which argument fails to work in CZF. The aim of this paper is to shed some light on the problem whether there are (enough) injective sets in CZF. We show that no two element set is injective unless the law of excluded middle is admitted for negated formulas, and that the axiom of power set is required for proving that "there are strongly enough injective sets". The latter notion is abstracted from the singleton embedding into the power set, which ensures enough injectives both in every topos and in IZF. We further show that it is consistent with CZF to assume that the only injective sets are the singletons. In particular, assuming the consistency of CZF one cannot prove in CZF that there are enough injective sets. As a complement we revisit the duality between injective and projective sets from the point of view of intuitionistic type theory.
机译:选择公理精确地确保了在ZFC中,每个集合都是射影的:也就是说,在集合类别中的射影对象。在建设性的ZF(CZF)中,已经讨论了足够的射影集,作为从Martin-L?f的直觉类型理论中对CZF的解释中提取的另一个公理。另一方面,每个非空集在经典ZF中都是单射的,这种论点在CZF中不起作用。本文的目的是阐明CZF中是否有(足够)个内射集的问题。我们证明,除非否定的公式接受排除中间律,否则没有两个元素集是可射性的,并且证明“有足够强的可射性集”需要幂集公理。后者的概念是从嵌入到功率集中的单例中抽象出来的,这确保了每个topos和IZF中都有足够的单射。我们进一步表明,假设唯一的内射集是单例是与CZF一致的。特别是,假设CZF的一致性,就不能在CZF中证明有足够的内射集。作为补充,我们从直觉类型理论的角度重新审视了内射集和射影集之间的对偶性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号