首页> 外文期刊>Structural and multidisciplinary optimization >A level-set-based topology and shape optimization method for continuum structure under geometric constraints
【24h】

A level-set-based topology and shape optimization method for continuum structure under geometric constraints

机译:基于水平集的几何约束下连续体结构拓扑和形状优化方法

获取原文
获取原文并翻译 | 示例
           

摘要

Recent advances in level-set-based shape and topology optimization rely on free-form implicit representations to support boundary deformations and topological changes. In practice, a continuum structure is usually designed to meet parametric shape optimization, which is formulated directly in terms of meaningful geometric design variables, but usually does not support free-form boundary and topological changes. In order to solve the disadvantage of traditional step-type structural optimization, a unified optimization method which can fulfill the structural topology, shape, and sizing optimization at the same time is presented. The unified structural optimization model is described by a parameterized level set function that applies compactly supported radial basis functions (CS-RBFs) with favorable smoothness and accuracy for interpolation. The expansion coefficients of the interpolation function are treated as the design variables, which reflect the structural performance impacts of the topology, shape, and geometric constraints. Accordingly, the original topological shape optimization problem under geometric constraint is fully transformed into a simple parameter optimization problem; in other words, the optimization contains the expansion coefficients of the interpolation function in terms of limited design variables. This parameterization transforms the difficult shape and topology optimization problems with geometric constraints into a relatively straightforward parameterized problem to which many gradient-based optimization techniques can be applied. More specifically, the extended finite element method (XFEM) is adopted to improve the accuracy of boundary resolution. At last, combined with the optimality criteria method, several numerical examples are presented to demonstrate the applicability and potential of the presented method.
机译:基于水平集的形状和拓扑优化的最新进展依赖于自由形式的隐式表示来支持边界变形和拓扑变化。在实践中,通常将连续体结构设计为满足参数形状优化,这是根据有意义的几何设计变量直接制定的,但通常不支持自由形式的边界和拓扑更改。为了解决传统阶梯式结构优化的弊端,提出了一种可以同时满足结构拓扑,形状和尺寸优化的统一优化方法。统一的结构优化模型由参数化的水平集函数描述,该函数应用紧凑支持的径向基函数(CS-RBFs),具有良好的平滑度和插值精度。插值函数的展开系数被视为设计变量,它们反映了拓扑,形状和几何约束的结构性能影响。因此,将原来在几何约束下的拓扑形状优化问题完全转化为简单的参数优化问题。换句话说,优化包含有限的设计变量的插值函数的展开系数。此参数化将具有几何约束的困难的形状和拓扑优化问题转换为相对直接的参数化问题,可以应用许多基于梯度的优化技术。更具体地说,采用扩展有限元方法(XFEM)来提高边界分辨率的准确性。最后,结合最优准则方法,给出了几个数值算例,说明了该方法的适用性和潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号