...
首页> 外文期刊>Structure >A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism.
【24h】

A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism.

机译:与反应中间体复合的生物合成硫解酶:晶体结构为催化机理提供了新见解。

获取原文
获取原文并翻译 | 示例
           

摘要

BACKGROUND: Thiolases are ubiquitous and form a large family of dimeric or tetrameric enzymes with a conserved, five-layered alphabetaalphabetaalpha catalytic domain. Thiolases can function either degradatively, in the beta-oxidation pathway of fatty acids, or biosynthetically. Biosynthetic thiolases catalyze the biological Claisen condensation of two molecules of acetyl-CoA to form acetoacetyl-CoA. This is one of the fundamental categories of carbon skeletal assembly patterns in biological systems and is the first step in a wide range of biosynthetic pathways, including those that generate cholesterol, steroid hormones, and various energy-storage molecules. RESULTS: The crystal structure of the tetrameric biosynthetic thiolase from Zoogloea ramigera has been determined at 2.0 A resolution. The structure contains a striking and novel 'cage-like' tetramerization motif, which allows for some hinge motion of the two tight dimers with respect to each other. The protein crystals were flash-frozen after a short soak with the enzyme's substrate, acetoacetyl-CoA. A reaction intermediate was thus trapped: the enzyme tetramer is acetylated at Cys89 and has a CoA molecule bound in each of its active-site pockets. CONCLUSIONS: The shape of the substrate-binding pocket reveals the basis for the short-chain substrate specificity of the enzyme. The active-site architecture, and in particular the position of the covalently attached acetyl group, allow a more detailed reaction mechanism to be proposed in which Cys378 is involved in both steps of the reaction. The structure also suggests an important role for the thioester oxygen atom of the acetylated enzyme in catalysis.
机译:背景:硫醇酶无处不在,并形成一个大家族的二聚或四聚酶,具有保守的五层字母aalphabetaalpha催化结构域。硫柳糖可以在脂肪酸的β-氧化途径中降解或生物合成。生物合成的硫醇酶催化两个乙酰基-CoA分子的生物克莱森缩合反应,形成乙酰乙酰基-CoA。这是生物系统中碳骨架组装模式的基本类别之一,也是许多生物合成途径的第一步,包括产生胆固醇,类固醇激素和各种储能分子的那些途径。结果:在2.0 A的分辨率下,确定了来自人形兽(Zoogloea ramigera)的四聚体生物合成硫解酶的晶体结构。该结构包含醒目的新颖的“笼状”四聚体基序,该基序允许两个紧密二聚体相对于彼此的一些铰接运动。将蛋白质晶体与酶的底物乙酰乙酰辅酶A短暂浸泡后,将其快速冷冻。因此捕获了反应中间体:四聚体酶在Cys89处被乙酰化,并在其每个活性位点口袋中结合了CoA分子。结论:底物结合袋的形状揭示了该酶的短链底物特异性的基础。活性位点结构,特别是共价连接的乙酰基的位置,允许提出更详细的反应机理,其中Cys378参与了反应的两个步骤。该结构还暗示了乙酰化酶的硫酯氧原子在催化中的重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号