首页> 外文期刊>Spectrochimica Acta, Part B. Atomic Spectroscopy >SPECTROSCOPIC APPLICATIONS OF THE PLASMA DISPERSION FUNCTION .2. AN ASYMMETRIC LINESHAPE MODEL AND THE COMPLEX SUSCEPTIBILITY
【24h】

SPECTROSCOPIC APPLICATIONS OF THE PLASMA DISPERSION FUNCTION .2. AN ASYMMETRIC LINESHAPE MODEL AND THE COMPLEX SUSCEPTIBILITY

机译:等离子体弥散函数的光谱应用2。不对称线形模型和复杂的敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

It is first shown that, when magnetization processes and resonant excitation of states in a spin system occur in the presence of internal and/or external random perturbing line-broadening mechanisms, the complex magnetic susceptibility of the system can be written in terms of the plasma dispersion function. This function arises in the description of linear wave propagation in plasmas and inherently contains information related to random phenomena, such as thermal motions, that affect wave propagation, This property is transferred to the complex magnetic susceptibility, which is the solution of the Bloch equations, through a parameter that can be associated with actual random perturbing processes affecting the resonant phenomenon, The resulting absorption and dispersion profiles that make up the so generalized complex susceptibility have a Voigtian shape; this can be used to fit spectral lines. Next, as a variety of mechanisms of diverse origin may affect the profiles of the absorptive and bi dispersive parts of either the plasma dispersion function or the complex susceptibility in such a way to make them asymmetric, a further generalization is made by introducing an asymmetry factor. A general relationship linking the Voigtian and the asymmetry parameters is obtained, This relationship indicates that the degree of asymmetry of a spectral line should not exceed its degree of Gaussian deformation measured in units of Lorentzian width. The obtained generalized relationship for the complex susceptibility could be useful in fitting experimental EPR or NMR absorption or dispersion spectra to understand the resonance phenomenon better when it occurs in the presence of both random perturbing and line-asymmetrizing processes. Finally, it is pointed out that the profiles associated with the real and imaginary parts of the asymmetrized plasma dispersion function and generalized asymmetric complex susceptibility thus obtained constitute a new spectroscopic lineshape model, This model can be applied in other spectroscopies (optical, Mossbauer, etc.) to fit experimental absorption and dispersion spectra which in general show some degree of asymmetry. (C) 1997 Elsevier Science B.V. [References: 21]
机译:首先表明,当在内部和/或外部随机扰动线扩展机制的存在下发生自旋系统中的磁化过程和状态的共振激发时,系统的复磁化率可以用等离子表示分散功能。此函数在描述等离子体中的线性波传播时出现,并且固有地包含与影响波传播的随机现象(如热运动)有关的信息。此属性被转换为复磁化率,这是Bloch方程的解,通过可以与影响共振现象的实际随机扰动过程相关联的参数,构成如此广义的复磁化率的所得吸收和色散曲线具有Voigtian形状;这可以用于拟合谱线。接下来,由于各种起源不同的机制可能会影响等离子体弥散函数或复杂磁化率的吸收和双弥散部分的分布,从而使其不对称,因此通过引入不对称因子来进一步概括。获得了将Voigtian参数和不对称参数联系起来的一般关系,该关系表明谱线的不对称度不应超过以洛伦兹宽度为单位测量的高斯形变度。对于复杂的磁化率,所获得的广义关系可用于拟合实验性EPR或NMR吸收或弥散谱,以更好地理解当共振现象在随机扰动和线路不对称过程中均出现时的共振现象。最后,指出与不对称等离子体弥散函数的实部和虚部以及由此获得的广义不对称复磁化率相关的轮廓构成了新的光谱线形模型,该模型可以应用于其他光谱学(光学,莫斯鲍尔等) 。)以适合通常表现出一定程度的不对称性的实验吸收光谱和色散光谱。 (C)1997 Elsevier Science B.V. [参考:21]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号