首页> 外文期刊>Spectrochimica Acta, Part B. Atomic Spectroscopy >Laboratory and synchrotron radiation total-reflection X-ray fluorescence: new perspective in detection limits and data analysis
【24h】

Laboratory and synchrotron radiation total-reflection X-ray fluorescence: new perspective in detection limits and data analysis

机译:实验室和同步辐射全反射X射线荧光:检测极限和数据分析的新视角

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Having established detection limits for transition elements exceeding current requirements of the semiconductorindustry, our recent efforts at the Stanford Synchrotron Radiation Laboratory (SSRL) have focused on theimprovement of the detection sensitivity for light elements such as Al. Data analysis is particularly challenging for Al,due to the presence of the neighboring Si signal from the substrate. Detection limits can be significantly improved by tuning the excitation energy below the Si—K absorption edge. For conventional TXRF systems this can be done by using a W—Mr#alpha# fluorescence line (1.78 keV) for excitation. At a synchrotron radiation facility energy tunability is available. However, in both cases this results in a substantial increase in background due to resonant X-ray Raman scattering. This scattering dominates the background under the Al K#alpha# fluorescence line, and consequently limits the achievable sensitivity for the detection of Al surface contaminants. In particular, we find that for a precise determination of the achievable sensitivity, the specific shape of the continuous Raman background must be taken into account in the data analysis. The data deconvolution presented here opens a new perspective for conventional TXRF systems to mitigate this background limitation. This results in a minimum detection limit of 2.4 x 10~9atoms/cm~2 for Al. Based on these results it will also be demonstrated that by improving the detector resolution, the minimum detection limit can be improved significantly. For a detector resolution of 15 eV as predicted for novel superconducting tunnel junction detectors, an improvement in minimum detection limit of approximately a factor of 3 can be estimated.
机译:在确定过渡元素的检出限超过了半导体工业的当前要求之后,我们最近在斯坦福同步加速器辐射实验室(SSRL)所做的工作集中于提高对轻元素(如Al)的检测灵敏度。由于存在来自衬底的相邻的Si信号,因此对于Al而言,数据分析特别具有挑战性。通过将激发能量调整到Si-K吸收边以下,可以大大提高检测限。对于常规的TXRF系统,这可以通过使用W-Mr#alpha#荧光线(1.78 keV)进行激发来完成。在同步辐射装置中,能量可调性是可用的。但是,在两种情况下,由于共振的X射线拉曼散射,这都会导致背景的大幅增加。这种散射在Al K#alpha#荧光线下控制了背景,因此限制了检测Al表面污染物的可达到的灵敏度。特别地,我们发现,为了精确确定可达到的灵敏度,在数据分析中必须考虑连续拉曼背景的特定形状。此处介绍的数据去卷积为传统TXRF系统减轻这种背景限制打开了新的视野。这导致Al的最小检出限为2.4 x 10〜9atoms / cm〜2。基于这些结果,还将证明通过提高检测器分辨率,可以大大提高最小检测限。对于新型超导隧道结检测器所预期的15 eV的检测器分辨率,可以估计最小检测限的提高约为3倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号