【24h】

Abstracts of the 53rd Starch Convention 2002 at Detmold

机译:Detmold的2002年第53届淀粉大会摘要

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Atomic Force Microscopy (ARM) allows the 'imaging' of biological samples in a natural, or near natural environmerit, with the minimum of sample preparation. The major requirement is that the samples must be relatively flat: the surface roughness needs to be comparable to, or less than the size of the surface features to be imaged. Starch granules pose an interesting problem because of their large size and shape. Embedding granules in a non-penetrating resin has been shown to produce,samples that can be sectioned and imaged to reveal the internal structure of the granule, without the need for many of the pretreatments used previously in electron or atomic force microscopy of starch. The structural features revealed include growth rings and 'blocklets'. The presently accepted model for the internal structure of starch granules has been developed from Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) studies. With these techniques it is necessary to pre-process the granule by lintnerisation, or enzyme treatment, in order to enhance the crystalline structure. Samples are often embedded, using penetrating resins with harsh setting regimes, and the samples may need to be stained and/or metal coated. The milder embedding and sectioning methods employed in the present studies, has revealed changes in granule structure, induced when granules are embedded in interpenetrating resins such as 'Nanoplast'. Furthermore, the present, more natural AFM images of the growth ring structure within the granule, differs significantly from previous SEM and TEM images of lintnerised, or amylase treated granules. The methodology developed permits comparison of the structures of starch granules from different plant species, and an investigation of the effect of specific genetic mutations in the biosynthetic pathway on granule structure.
机译:原子力显微镜(ARM)可以在自然或接近自然的环境中对生物样品进行“成像”,而只需最少的样品制备。主要要求是样品必须相对平整:表面粗糙度必须与要成像的表面特征尺寸相当或更小。淀粉颗粒由于尺寸大且形状大而引起了一个有趣的问题。已经证明将颗粒包埋在非渗透性树脂中可以产生样品,可以对其进行切片和成像以揭示颗粒的内部结构,而无需先前在淀粉的电子或原子力显微镜检查中使用的许多预处理。揭示的结构特征包括年轮和“小块”。淀粉颗粒内部结构的当前公认模型是通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究开发的。使用这些技术,必须通过线化或酶处理对颗粒进行预处理,以增强晶体结构。通常使用渗透性强的渗透树脂将样品包埋,并且可能需要对样品进行染色和/或金属涂层。本研究中采用的较温和的包埋和切片方法已经揭示了颗粒结构的变化,这种变化是在将颗粒嵌入互穿性树脂(例如“ Nanoplast”)中时引起的。此外,当前的,更自然的颗粒内生长环结构的AFM图像与之前的棉化或经淀粉酶处理的颗粒的SEM和TEM图像显着不同。所开发的方法可以比较来自不同植物物种的淀粉颗粒的结构,并可以研究生物合成途径中特定基因突变对颗粒结构的影响。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号