首页> 外文期刊>Spectroscopy >The Benefits of Dynamic Reaction Cell ICP-MS Technology to Determine Ultratrace Metal Contamination Levels in High-Purity Phosphoric and Sulfuric Acid
【24h】

The Benefits of Dynamic Reaction Cell ICP-MS Technology to Determine Ultratrace Metal Contamination Levels in High-Purity Phosphoric and Sulfuric Acid

机译:动态反应池ICP-MS技术用于测定高纯磷酸和硫酸中超痕量金属污染水平的益处

获取原文
获取原文并翻译 | 示例
           

摘要

This study investigates the applicability of a quadrupole-based ICP-MS fitted with a dynamic reaction cell (DRC) to analyze high-purity phosphoric and sulfuric acid used in the semiconductor industry. It compares the DRC approach with traditional ICP-MS background reduction techniques to compensate for phosphorus- and sulfur-based interferences and presents data that suggests that the DRC technology can reach the next generation of semiconductor purity levels for these chemicals. The drive for more-compact integrated circuits and smaller electronic devices has put very stringent demands on suppliers of high-purity chemicals used in the semiconductor manufacturing process. To reduce defects and increase yield, lower trace element contamination levels are being required in all process chemicals, especially as initiatives like the International Technology Roadmap for Semiconductors (ITRS) (1) are setting the course for the next generation of semiconductor devices. Of particular significance are contamination issues associated with high-purity acids, because their aggressive dissolution properties make them prone to acquire metal from other sources. In addition, they are often used in large quantities with other chemicals to dissolve metals from the surface of silicon wafers, to build a layer of silicon dioxide on top of the silicon substrate, or as an etchant. For these reasons, trace element purity levels in concentrated mineral acids must be monitored very closely. Two of the most important acids used in the manufacture of semiconductor devices are phosphoric and sulfuric acids. Even though trace element purity levels are not as strict as for acids such as hydrofluoric and hydrochloric, they are still low enough to present problems for the analytical techniques being used. The major difficulties are related to their extremely high acid concentration — ~85% w/v for phosphoric acid and ~98% w/v for sulfuric acid — which produces corrosion problems and very high specific gravity — 1.70 g/mL for phosphoric acid and 1.83 g/mL for sulfuric acid — which in turn produces sample viscosity effects. In addition, when inductively coupled plasma-mass spectrometry (ICP-MS) is required to analyze the highest purity acids, the phosphate and sulfate matrices generate a significant number of plasma-based ionic species, which interfere with many of the analyte elements.
机译:这项研究调查了配有动态反应池(DRC)的基于四极杆的ICP-MS的适用性,以分析半导体工业中使用的高纯度磷酸和硫酸。它将DRC方法与传统的ICP-MS背景降低技术进行了比较,以补偿基于磷和硫的干扰,并提供了数据,表明DRC技术可以达到这些化学品的下一代半导体纯度水平。对于更紧凑的集成电路和更小的电子设备的驱动,对半导体制造过程中使用的高纯度化学品的供应商提出了非常严格的要求。为了减少缺陷并提高产量,所有工艺化学品都需要降低痕量元素的污染水平,尤其是像《国际半导体技术路线图》(ITRS)(1)之类的举措为下一代半导体器件奠定了基础。特别重要的是与高纯度酸相关的污染问题,因为它们的强力溶解特性使其易于从其他来源获取金属。另外,它们经常与其他化学物质一起大量使用,以溶解来自硅片表面的金属,在硅基板的顶部形成一层二氧化硅,或用作蚀刻剂。由于这些原因,必须非常密切地监测浓无机酸中的微量元素纯度。用于制造半导体器件的两种最重要的酸是磷酸和硫酸。即使微量元素的纯度水平不如氢氟酸和盐酸等酸严格,但它们仍然很低,对所使用的分析技术提出了问题。主要困难在于其极高的酸浓度-磷酸约为85%w / v,硫酸约为98%w / v-会产生腐蚀问题和非常高的比重-磷酸和1.70 g / mL硫酸为1.83 g / mL,这反过来会产生样品粘度影响。此外,当需要使用电感耦合等离子体质谱法(ICP-MS)分析最高纯度的酸时,磷酸盐和硫酸盐基体会产生大量基于等离子体的离子物种,从而干扰许多分析物元素。

著录项

  • 来源
    《Spectroscopy》 |2003年第1期|共16页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号