【24h】

Vulnerability and controllability of networks of networks

机译:网络网络的脆弱性和可控性

获取原文
获取原文并翻译 | 示例
           

摘要

Network science is a highly interdisciplinary field ranging from natural science to engineering technology and it has been applied to model complex systems and used to explain their behaviors. Most previous studies have been focus on isolated networks, but many real-world networks do in fact interact with and depend on other networks via dependency connectivities, forming "networks of networks" (NON). The interdependence between networks has been found to largely increase the vulnerability of interacting systems, when a node in one network fails, it usually causes dependent nodes in other networks to fail, which, in turn, may cause further damage on the first network and result in a cascade of failures with sometimes catastrophic consequences, e.g., electrical blackouts caused by the interdependence of power grids and communication networks. The vulnerability of a NON can be analyzed by percolation theory that can be used to predict the critical threshold where a NON collapses. We review here the analytic framework for analyzing the vulnerability of NON, which yields novel percolation laws for n-interdependent networks and also shows that percolation theory of a single network studied extensively in physics and mathematics in the last 50 years is a specific limited case of the more general case of n interacting networks. Understanding the mechanism behind the cascading failure in NON enables us finding methods to decrease the vulnerability of the natural systems and design of more robust infrastructure systems. By examining the vulnerability of NON under targeted attack and studying the real interdependent systems, we find two methods to decrease the systems vulnerability: (1) protect the high-degree nodes, and (2) increase the degree correlation between networks. Furthermore, the ultimate proof of our understanding of natural and technological systems is reflected in our ability to control them. We also review the recent studies and challenges on the controllability of networks and temporal networks. (C) 2015 Elsevier Ltd. All rights reserved.
机译:网络科学是一个从自然科学到工程技术的高度交叉学科领域,已被用于对复杂系统进行建模并用于解释其行为。以前的大多数研究都集中在隔离的网络上,但是实际上,许多现实世界的网络确实通过依赖关系与其他网络交互并依赖其他网络,从而形成“网络网络”(NON)。已经发现网络之间的相互依赖性大大增加了交互系统的脆弱性,当一个网络中的某个节点发生故障时,通常会导致其他网络中的从属节点发生故障,进而可能对第一个网络造成进一步破坏并导致导致有时会带来灾难性后果的一系列故障,例如,由于电网和通信网络的相互依赖而导致的电力中断。可以通过渗流理论分析NON的脆弱性,渗流理论可用于预测NON崩溃的临界阈值。我们在这里回顾了分析NON的脆弱性的分析框架,该框架为n个相互依赖的网络产生了新颖的渗流定律,并且还表明了最近50年在物理学和数学领域广泛研究的单个网络的渗流理论是一个特定的有限情况n个交互网络的更一般情况。了解NON中的级联故障背后的机制,使我们能够找到减少自然系统的脆弱性的方法,并设计出更强大的基础架构系统。通过研究有针对性的攻击下的NON漏洞并研究实际的相互依赖系统,我们发现了两种降低系统漏洞的方法:(1)保护高级节点,(2)增加网络之间的程度相关性。此外,我们对自然和技术系统的理解的最终证明体现在我们控制自然和技术系统的能力上。我们还将回顾网络和时间网络的可控性的最新研究和挑战。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号