...
首页> 外文期刊>Spine >Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament.
【24h】

Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament.

机译:颈椎间盘置换术-多孔涂层运动假体:比较生物力学分析,显示后纵韧带的关键作用。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

STUDY DESIGN: Benchtop cadaveric biomechanical comparative testing and caprine animal model in vivo implantation. OBJECTIVE: To evaluate the role of the posterior longitudinal ligament in cervical arthroplasty and to understand the relative contribution of this ligament in nonfusion applications. SUMMARY OF BACKGROUND DATA: Rauschning refers to the posterior longitudinal ligament as "The Kleenex Ligament" due to its apparent anatomic insignificance. White and Panjabi found the posterior longitudinal ligament ranked only fourth in importance in tensile load-to-failure biomechanical testing. In the postoperative situation following anterior cervical diskectomy fusion, posterior longitudinal ligament integrity is overlooked by physicians because the entire disc space usually fuses into a homogeneous block of bone. PURPOSE: This biomechanical study was undertaken to determine the relative importance of the posterior longitudinal ligament following two different degrees of anterior decompression, anterior disc replacement, and anterior arthrodesis procedures. METHODS: A total of seven fresh frozen human cadaveric cervical spines (C3-C7) (mean age 68 +/- 19 years) were used for biomechanical testing. Each vertebra was equipped with three non-colinear light emitting diodes designed for detection by an optoelectronic motion measurement system (3020 Optotract System). To determine the multidirectional flexibility, six pure moments (flexion, extension, right + left lateral bending, right + left axial rotation) and axial compression were applied using a servohydraulic 858 Bionix testing device configured with a six-degree-of-freedom spine simulator. Range of motion was defined as the peak displacement from the initial neutral position to the maximum load, whereas the neutral zone represents the motion from the initial neutral position to the unloaded position at the beginning of the third cycle. Seven groups of (N = 7 each) constructs at C5-C6 were: 1) intact "native" C5-C6 level; 2) anterior diskectomy (posterior longitudinal ligament intact); 3) a Low Profile Porous Coated Motion cervical disc replacement; 4) posterior longitudinal ligament resected; 5) Porous Coated Motion cervical disc replacement fixed with anterior flanges and screws; 6) tricortical structural allograft; and 7) an anterior cervical translational plate + allograft. The caprine model was evaluated for suitability as an animal model with 12 goats undergoing C3-C4 anterior cervical Porous Coated Motion disc replacement. RESULTS: Group 2 (anterior diskectomy alone) was significantly more stable than Group 4 (anterior diskectomy + posterior longitudinal ligament resection) in flexion-extension, 18.7 +/- 4.76 degrees versus 24.8 +/- 4.42 degrees (P < 0.05) and in lateral bending, 5.9 +/- 1.79 degrees versus 10.7 +/- 2.8 degrees (P < 0.05). The comparison for the two conditions for axial rotation, 10.4 +/- 13.9 degrees versus 13.9 +/- 2.7 degrees, and axial compression, 1.19 +/-.98 degrees versus 1.52 +/- 1.14 degrees, showed the same trend. Twelve goatsundergoing porous coated motion cervical disc replacement had no evidence of prosthesis loosening, neurologic complications, or experienced inflammatory reactions from particulate wear debris after 6 months of implantation. DISCUSSION: This study confirms the pivotal role of the posterior longitudinal ligament in postsurgical stability of the cervical spine following anterior diskectomy. This is because the lateral anulus, uncovertebral ligaments, and lateral capsular ligaments are stretched and plastically deformed in the surgical distraction process of restoring the disc space height following anterior surgical decompression. There should be a separate determination of the range of motion of cervical disc replacements depending of the integrity and the amount of the posterior longitudinal ligament that has been resected. CLINICAL RELEVANCE: There are two basic types of total knee replacements, posterior cruciate ligament-
机译:研究设计:台式尸体生物力学比较测试和体内植入的山羊动物模型。目的:评估后纵韧带在颈椎置换术中的作用,并了解该韧带在非融合应用中的相对作用。背景数据概述:由于其明显的解剖学意义,劳什宁将后纵韧带称为“面巾韧带”。 White和Panjabi发现,在纵向拉伸断裂失败的生物力学测试中,后纵韧带的重要性仅排名第四。在颈椎前路椎间盘切除术融合后的术后情况下,由于整个椎间盘空间通常融合成均匀的骨块,因此医生忽视了后纵韧带的完整性。目的:进行了这项生物力学研究,以确定在两种不同程度的前减压,前椎间盘置换和前关节固定术后,后纵韧带的相对重要性。方法:总共使用了七个新鲜的冷冻人尸体颈椎(C3-C7)(平均年龄68 +/- 19岁)进行生物力学测试。每个椎骨均配备了三个非共线发光二极管,这些二极管设计用于通过光电运动测量系统(3020 Optotract System)进行检测。为了确定多方向的柔韧性,使用配置有六自由度脊柱模拟器的伺服液压858 Bionix测试设备施加六个纯力矩(屈曲,伸展,右+左横向弯曲,右+左轴向旋转)和轴向压缩。运动范围定义为从初始中立位置到最大负载的峰值位移,而中立区代表在第三周期开始时从初始中立位置到空载位置的运动。 C5-C6的七组(每组N = 7)构建体是:1)完整的“天然” C5-C6水平; 2)前路椎间盘切除术(后纵韧带完整); 3)薄型多孔涂层运动颈椎间盘置换术; 4)切除后纵韧带; 5)用前法兰和螺钉固定的多孔涂层运动颈椎间盘置换术; 6)三皮质结构同种异体移植; 7)前颈平移板+同种异体移植。评价了该山羊模型作为动物模型的适用性,该动物模型有12只山羊接受了C3-C4颈椎前孔多孔涂层运动椎间盘置换术。结果:第2组(仅前路椎间盘切除术)的屈伸延伸比第4组(前路椎间盘切除术+后纵韧带切除术)稳定得多,分别为18.7 +/- 4.76度和24.8 +/- 4.42度(P <0.05)横向弯曲5.9 +/- 1.79度与10.7 +/- 2.8度(P <0.05)。轴向旋转条件为10.4 +/- 13.9度与13.9 +/- 2.7度,轴向压缩条件为1.19 +/-。98度与1.52 +/- 1.14度的比较显示了相同的趋势。十二只山羊正在接受多孔涂层运动颈椎间盘置换术,没有证据表明假体松动,神经系统并发症或植入6个月后由于颗粒磨损碎片引起的炎症反应。讨论:这项研究证实了前椎间盘切除术后后纵韧带在颈椎术后稳定性中的关键作用。这是因为在前路手术减压后恢复椎间盘间隙高度的手术牵张过程中,外侧肛门环,非椎弓韧带和外侧囊膜韧带被拉伸并塑性变形。应根据已切除的后纵韧带的完整性和数量,单独确定颈椎间盘置换术的运动范围。临床意义:全膝关节置换术有两种基本类型,即后交叉韧带

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号