...
首页> 外文期刊>Solid state ionics >Multifunctional ZrF4 nanocoating for improving lithium storage performances in layered Li[Li0.2Ni0.17Co0.07Mn0.56]O-2
【24h】

Multifunctional ZrF4 nanocoating for improving lithium storage performances in layered Li[Li0.2Ni0.17Co0.07Mn0.56]O-2

机译:多功能ZrF4纳米涂层可改善层状Li [Li0.2Ni0.17Co0.07Mn0.56] O-2中的锂存储性能

获取原文
获取原文并翻译 | 示例
           

摘要

Layered Li[Li0.2Ni0.17Co0.07Mn0.56]02 is successfully synthesized by a sol-gel method and is further coated with ZrF4 (0.5, 1, 2 and 3 wt.%) through a simple wet chemical strategy. Physical characterizations indicate that the ZrF4 nanocoating layers have little impact on cathode structure. Comparison of electrochemical performances demonstrates that 1 wt.% ZrF4 modified electrode exhibits the highest reversible capacity (193 mAh g(-1)) and best cycling performance (capacity retention of 89%) after 100 cycles at 0.1 C. Electrochemical impedance spectroscopy (EIS) analysis reveals that charge transfer resistance grows much slower after coating. Fourier transform infrared (FTIR) results further confirm that the surface ZrF4 effectively suppresses the fast growth of solid electrolyte interface (SEI) film. The improved electrochemical properties are thus attributed to the multifunctional ZrF4 nanocoating layer, which not only suppresses the side reaction(s) and oxygen loss, but also accelerates the lithium ion transportation due to the reduced resistance. Additionally, differential scanning calorimetry (DSC) tests show that the ZrF4 layer also helps in enhancing the thermal stability. This work provides a new insight into surface modification in achieving high energy cathodes for the next-generation lithium-ion batteries. (C) 2015 Elsevier B.V. All rights reserved.
机译:通过溶胶-凝胶法成功地合成了层状Li [Li0.2Ni0.17Co0.07Mn0.56] 02,并通过简单的湿化学策略用ZrF4(0.5、1、2和3重量%)进一步涂覆了Li [Li0.2Ni0.17Co0.07Mn0.56] 02。物理特征表明ZrF4纳米涂层对阴极结构影响很小。电化学性能的比较表明,在0.1 C的温度下经过100次循环后,重量百分比为1的ZrF4修饰电极表现出最高的可逆容量(193 mAh g(-1))和最佳循环性能(容量保持率89%)。 )分析表明,涂覆后电荷转移电阻的增长要慢得多。傅立叶变换红外(FTIR)结果进一步证实表面ZrF4有效抑制了固体电解质界面(SEI)膜的快速生长。因此,电化学性能的提高归因于多功能的ZrF4纳米涂层,该涂层不仅抑制了副反应和氧损失,而且由于电阻降低而加速了锂离子的运输。此外,差示扫描量热法(DSC)测试表明ZrF4层还有助于增强热稳定性。这项工作为实现下一代锂离子电池的高能阴极提供了表面改性的新见解。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号