首页> 外文期刊>Soldering & Surface Mount Technology >Solder ball failure mechanisms in plastic ball grid array packages
【24h】

Solder ball failure mechanisms in plastic ball grid array packages

机译:塑料球栅阵列封装中的焊球失效机制

获取原文
获取原文并翻译 | 示例
           

摘要

Plastic ball grid array packages were aged at 125 and 150℃ for up to 2000 hours. Various solder ball pad metallurgies were studied. These included a pure electrolytic Ni barrier layer with an Au protective layer from 0.48 to 1.27 μm thick, an electroless plated Ni-P barrier layer with 0.48 μm Au protective layer and a Ni-Co baffler layer with an Au layer from 0.52 to 1.46 μm thick. Solder ball shear tests were conducted at a range of ageing times. The solder ball shear strength was found to decrease after an initial hardening stage. The deterioration of solder ball shear strength was found to be mainly caused by the formation of intermetallic compound (IMC) layers, together with microstructural coarsening and diffusion related porosity at the interface. Sn was found to form different intermetallic compound layers for the different types of Ni barrier layer. For the ball pad metallurgy, two distinct intermetallic compound layer structures were observed to have formed after ageing. For electrolytic Ni there was found to be a critical Au thickness below which separate (Au,Ni)Sn{sub}4 IMC particles formed on the surface of the Ni{sub}3Sni. However, if the Au layer was thicker than this critical value, then a continuous (Au,Ni)Sn{sub}4 layer formed on top of the Ni{sub}3Sn{sub}4. A thick Au layer and high ageing temperature resulted in the rapid formation of a thick (Au,Ni)Sn{sub}4 intermetallic compound layer. For electrolytic Ni/Co plating, the critical Au thickness is thinner than pure electrolytic Ni plating in terms of continuous (Au,Ni,Co)Sn{sub}4 intermetallic compound layer formation. Once two continuous intermetallic compound layers formed fracture tended to occur at their interface. It was found that the bonding strength between (Au,Ni,Co)Sn{sub}4 and (Ni,Co){sub}3Sn{sub}4 is higher than that between (Au,Ni)Sn{sub}4 and Ni{sub}3Sn{sub}4. For the ball pad metallurgies which do not form two continuous intermetallic compound layers, the shear strength still decreased, due to the coarsening of the microstructure, intermetallic particle formation and diffusion related porosity at the surface of the Ni{sub}3Sn{sub}4.
机译:塑料球栅阵列封装在125和150℃下老化2000小时。研究了各种锡球垫冶金学。其中包括具有0.48至1.27μm厚的Au保护层的纯电解Ni阻挡层,具有0.48μmAu保护层的化学镀Ni-P阻挡层和具有0.52至1.46μm的Au层的Ni-Co阻挡层厚。在一定的老化时间下进行了锡球剪切测试。发现在初始硬化阶段之后,焊球的剪切强度降低。发现焊球剪切强度的下降主要是由于金属间化合物(IMC)层的形成,以及界面处的微观结构粗化和扩散相关的孔隙率所致。发现Sn对于不同类型的Ni阻挡层形成不同的金属间化合物层。对于球垫冶金,观察到时效后形成了两个不同的金属间化合物层结构。对于电解Ni,发现存在临界的Au厚度,低于该临界Au厚度,在Ni {sub} 3Sni的表面上形成单独的(Au,Ni)Sn {sub} 4 IMC颗粒。然而,如果Au层的厚度大于该临界值,则在Ni {sub} 3Sn {sub} 4的顶部上形成连续的(Au,Ni)Sn {sub} 4层。厚的金层和高的时效温度导致快速形成厚的(Au,Ni)Sn {sub} 4金属间化合物层。对于电解Ni / Co镀层,就连续(Au,Ni,Co)Sn {sub} 4金属间化合物层形成而言,临界金厚度比纯电解镍镀层薄。一旦形成两个连续的金属间化合物层,则倾向于在其界面处发生断裂。发现(Au,Ni,Co)Sn {sub} 4与(Ni,Co){sub} 3Sn {sub} 4之间的结合强度高于(Au,Ni)Sn {sub} 4与(Au,Ni)Sn {sub} 4之间的结合强度。 Ni {sub} 3Sn {sub} 4。对于不形成两个连续的金属间化合物层的球垫冶金,由于Ni {sub} 3Sn {sub} 4表面的微观结构变粗,金属间颗粒形成和扩散相关的孔隙率,剪切强度仍然下降。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号