首页> 外文期刊>Solid state sciences >First-principles derivation of vacuum surface energies from crystal structures
【24h】

First-principles derivation of vacuum surface energies from crystal structures

机译:从晶体结构推导真空表面能的第一性原理

获取原文
获取原文并翻译 | 示例
           

摘要

Phase separation in solid state chemistry may occur following two main mechanisms. For high interfacial energy (γ 0), only local concentration fluctuations are allowed. Consequently, the new phase must first nucleate before growing up to a macroscopic scale (Classical Nucleation Theory or CNT). On the other hand, for vanishing interfacial energies (γ ~ 0) macroscopic concentration fluctuations have a low energetic cost, and phase separation then leads to a deeply interconnected morphology (Spinodal Decomposition or SD). Consequently, it is very challenging to predict the order of magnitude of interfacial energies from the sole knowledge of the crystalline structure. Here we present a simple algorithm allowing to evaluate the vacuum surface energies of any crystalline material using a spherical charge approximation of density functional theory (DFT) equations and ab initio ground-state atomic properties. Using this formation, it is easily explained why materials based on strong covalent bonds (oxides) or strong hydrogen bonds (ices) are expected to follow the CNT picture and why polymeric materials or metallic alloys prefer to undergo spontaneous SD. For materials displaying complex polymorphic behavior (such as observed for ice polymorphs), it becomes possible to find which polymorph should display the lowest surface energy and also to discriminate between correct and wrong crystallographic data. Thus we show for the first time that the reported crystal structure of ice-IV is characterized by a large negative surface energy ad that it should be urgently revisited using accurate neutron diffraction data. Finally, we also demonstrate that the surface energy concept remains valid even at a molecular scale, bringing strong support to one of the most crucial hypothesis of CNT.
机译:固态化学中的相分离可通过两个主要机理发生。对于高界面能(γ 0),仅允许局部浓度波动。因此,新相必须先成核,然后才能长大到宏观规模(经典成核理论或CNT)。另一方面,对于消失的界面能(γ〜0),宏观的浓度波动具有较低的能量消耗,而相分离会导致深层的相互联系的形态(Spinodal分解或SD)。因此,仅根据晶体结构来预测界面能的量级是非常具有挑战性的。在这里,我们提出一种简单的算法,允许使用密度泛函理论(DFT)方程的球面电荷近似和从头开始的基态原子特性来评估任何晶体材料的真空表面能。使用这种构造,可以轻松地解释为什么期望基于强共价键(氧化物)或强氢键(冰)的材料遵循CNT图片,以及为什么聚合材料或金属合金更喜欢自发进行SD。对于显示复杂多晶型行为的材料(例如观察到的冰多晶型物),可以找到哪种多晶型物应显示最低的表面能,并区分正确和错误的晶体学数据。因此,我们首次证明了冰IV的晶体结构具有较大的负表面能特征,应使用准确的中子衍射数据对其进行紧急研究。最后,我们还证明了即使在分子尺度上,表面能概念仍然有效,这为CNT最关键的假设之一提供了有力的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号