首页> 外文期刊>Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion >Phase Change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability
【24h】

Phase Change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability

机译:具有不同壳组成的相变材料(PCM)微胶囊:制备,表征和热稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

In this this study, phase change materials (Rubitherm (R) RT 27) microcapsules were successfully obtained by two different methods. The main difference between them remains on the shell composition, as they are composed of different coacervates (Sterilized Gelatine/Arabic Gum for the SG/AG method and Agar-Agar/Arabic Gum for the AA/AG method). Microcapsules were thermally characterized by thermo-optical microscopy and differential scanning calorimetry. Using scanning electron microscopy, their spherical morphology (sphericity factor of 0.94-0.95) and their particle size distribution were determined, obtaining an average diameter of 12 mu m for the SG/AG method and lower values for the AA/AG method, where nanocapsules were also observed (average diameter of 4.3 mu m for the microcapsules and 104 nm for the nanocapsules). The thermal stability determination was carried out by Thermogravimetric analyses (TG) and the results show a high decomposition temperature, although the process takes places in four steps for the two mentioned methods. Moreover, the microcapsules obtained by the AA/AG method decompose in a more gradual way, as in the TG results a double step, instead of one, is appreciable. On the whole, the prepared microencapsulated PCM are totally capable of developing their role in thermal energy storage.
机译:在这项研究中,通过两种不同的方法成功获得了相变材料(Rubitherm(R)RT 27)微胶囊。它们之间的主要区别在于壳成分,因为它们由不同的凝聚层组成(对于SG / AG方法,是无菌明胶/阿拉伯胶,对于AA / AG方法,是琼脂-琼脂/阿拉伯胶)。通过热光学显微镜和差示扫描量热法对微胶囊进行热表征。使用扫描电子显微镜确定其球形形态(球形度为0.94-0.95)和其粒径分布,SG / AG方法的平均直径为12μm,而AA / AG方法的平均直径更低,其中纳米胶囊还观察到了(微胶囊的平均直径为4.3μm,纳米胶囊的平均直径为104nm)。通过热重分析(TG)进行热稳定性测定,结果显示较高的分解温度,尽管对于上述两种方法,该过程分四个步骤进行。此外,通过AA / AG方法获得的微胶囊以更渐进的方式分解,因为在TG结果中,可以看到一个双步而不是一个双步。总体而言,所制备的微囊PCM完全有能力发挥其在热能储存中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号