首页> 外文期刊>Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion >Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon
【24h】

Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon

机译:玻璃薄膜太阳能电池上的多晶硅:从固相到液相结晶硅的转变

获取原文
获取原文并翻译 | 示例
           

摘要

The paper presents a review of major features of the crystalline silicon on glass (CSG) technology, its achievements, limitations and challenges, and latest developments. CSG cells are fabricated by solid-state crystallisation (SPC) of 1.5-3.5 μm thick precursor diodes prepared by PECVD or ebeam evaporation followed by thermal annealing, hydrogen passivation and metallisation. The highest efficiency of 10.4% was demonstrated on a PECVD minimodule on textured borosilicate glass. The best performing ebeam-evaporated cells on planar glass reached 8.6% efficiency. CSG cells were also produced on low-cost soda-lime glass with 8.1% and 7.1% efficiencies on PECVD and ebeam material respectively. The performance of SPC CSG cells is limited to below 11% because high defect density in SPC material limits V_(OC) and 1.5-3.5 μm cell thickness limits J_(SC). A breakthrough came about when thicker poly-Si films with low defect density on glass were prepared by liquid-phase crystallisation (Amkreutz, 2011) leading to development of the next generation, liquid-phase crystallised silicon on glass (LPCSG) solar cells. The best performing LPCSG cells are made by line-focus laser crystallisation of 10 μm thick ebeam silicon films on dielectric layer coated borosilicate glass. High material quality is confirmed by low defect density observed in TEM images, high carrier mobilities, and minority carrier lifetime longer than 260 ns. An intermediate dielectric layer can be SiC_x, SiO_x, SiN _x or their combination and its properties are crucial for cell fabrication and performance. Dopants are introduced into the LPCSG cell absorber either during film deposition or diffused from doped intermediate layer during crystallisation. Light-trapping texture is formed on the exposed silicon surface by wet etching. A cell emitter is created by diffusion from spin-on-dopant source. Cell metallisation is based on point contacts between Al and cell emitter and absorber accessed through vias etched through cell layers to different depths. LPCSG cells outperformed CSG cells, with record V_(OC) of 585 mV and efficiency of 11.7%. Efficiencies above 13% are achievable by improving light-coupling and contacting.
机译:本文介绍了玻璃上晶体硅(CSG)技术的主要特征,其成就,局限性和挑战以及最新发展。 CSG电池是通过PECVD或电子束蒸发制备的1.5-3.5μm厚的前驱体二极管进行固态结晶(SPC),然后进行热退火,氢钝化和金属化来制造的。在带纹理的硼硅酸盐玻璃上的PECVD微型模块上显示出10.4%的最高效率。平板玻璃上表现最佳的电子束蒸发电池效率达到8.6%。 CSG电池也是在低成本钠钙玻璃上生产的,在PECVD和电子束材料上的效率分别为8.1%和7.1%。 SPC CSG电池的性能限制在11%以下,因为SPC材料中的高缺陷密度会限制V_(OC),而1.5-3.5μm的电池厚度会限制J_(SC)。当通过液相结晶制备玻璃上具有低缺陷密度的较厚的多晶硅膜时,就取得了突破(Amkreutz,2011年),从而导致了下一代液相玻璃上结晶硅(LPCSG)太阳能电池的开发。表现最佳的LPCSG电池是通过在电介质层涂覆的硼硅酸盐玻璃上对10μm厚的电子束硅膜进行线聚焦激光结晶而制成的。通过在TEM图像中观察到的低缺陷密度,高载流子迁移率以及少数载流子寿命超过260 ns,证实了高材料质量。中间介电层可以是SiC_x,SiO_x,SiN_x或它们的组合,其特性对于电池的制造和性能至关重要。在膜沉积过程中或在结晶过程中,将掺杂剂从LPCSG电池吸收器中引入,或从掺杂的中间层中扩散出来。通过湿蚀刻在暴露的硅表面上形成陷光纹理。单元发射极是通过自旋掺杂源的扩散产生的。单元金属化基于Al与单元发射极和吸收体之间的点接触,该点接触是通过蚀刻穿过单元层至不同深度的通孔进行的。 LPCSG电池的性能优于CSG电池,V_(OC)为585 mV,效率为11.7%。通过改善光耦合和接触,可以达到13%以上的效率。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号