...
首页> 外文期刊>Soil Biology & Biochemistry >Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils
【24h】

Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils

机译:二氧化碳浓度升高对三种对比土壤微生物群落碳氮功能能力的长期影响

获取原文
获取原文并翻译 | 示例
           

摘要

Elevated atmospheric CO2 (eCO(2)) affects soil-plant systems by stimulating plant growth, rhizosphere processes and altering the amount and quality of organic matter inputs. This study examined whether these plant-mediated processes indirectly influence the structure and function of soil microbial communities and soil carbon (C) and nitrogen (N) cycling. Surface soils (0-5 and 5-10 cm) of Calcarosol, Chromosol and Vertosol were sampled after 5 years' exposure to either ambient CO2 (aCO(2); 390 ppm) or eCO(2) (550 ppm) using free-air CO2 enrichment (SoilFACE). Changes in microbial community structure were not detected using automated ribosomal intergenic spacer analyses (ARISA). However, quantitative PCR of targeted organic C decomposition (cu, cbh), N mineralisation (apr, npr), nitrification (amoB, amoA, norA) and denitrification (nirK, narG, nosZ) genes showed that eCO(2) reduced the abundance of half of the functional genes in the Chromosol and Vertosol and their abundance was tightly coupled with total C and N pools. In the Chromosol, total N and C of soil (2 mm particles) was reduced by up to 20% and was associated with enhanced microbial activity (soil respiration). Soil C was also reduced in the Vertosol (15%, 5-10 cm); however greater laccase, reduced cellulase and lower microbial activity indicated that organic matter decomposition was currently limited by N. The loss of soil organic N and C under eCO(2) was likely driven by greater N demand. This study highlighted that the indirect effects of eCO(2) on functional capacity of soil microbial communities in dryland agricultural system depended on the soil type. (C) 2016 Elsevier Ltd. All rights reserved.
机译:大气中的二氧化碳浓度升高(eCO(2))通过刺激植物生长,根际过程和改变有机物质输入的数量和质量,影响土壤植物系统。这项研究检查了这些植物介导的过程是否间接影响土壤微生物群落的结构和功能以及土壤碳(C)和氮(N)的循环。在暴露于环境CO2(aCO(2); 390 ppm)或eCO(2)(550 ppm)5年后,使用游离碱将Calcarosol,Chromosol和Vertosol的表层土壤(0-5和5-10 cm)取样。空气中的二氧化碳富集(SoilFACE)。使用自动核糖体基因间间隔子分析(ARISA)未检测到微生物群落结构的变化。但是,针对目标有机碳分解(cu,cbh),氮矿化(apr,npr),硝化作用(amoB,amoA,norA)和反硝化作用(nirK,narG,nosZ)的定量PCR显示,eCO(2)降低了丰度Chromosol和Vertosol中一半的功能基因及其丰度与总C和N库紧密相关。在铬绿溶胶中,土壤(<2 mm颗粒)的总氮和碳减少了多达20%,并与增强的微生物活性(土壤呼吸)有关。 Vertosol(15%,5-10 cm)中的土壤C也减少了;然而,更大的漆酶,减少的纤维素酶和更低的微生物活性表明,有机物的分解目前受到N的限制。在eCO(2)下土壤有机N和C的损失很可能是由于氮的需求增加所致。这项研究强调指出,eCO(2)对旱地农业系统中土壤微生物群落功能能力的间接影响取决于土壤类型。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号