首页> 外文期刊>Soil Biology & Biochemistry >Effect of elevated CO2 on soil N dynamics in a temperate grassland soil
【24h】

Effect of elevated CO2 on soil N dynamics in a temperate grassland soil

机译:二氧化碳浓度升高对温带草原土壤氮动态的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The response of terrestrial ecosystems to elevated atmospheric CO2 is related to the availability of other nutrients and in particular to nitrogen (N). Here we present results on soil N transformation dynamics from a N-limited temperate grassland that had been under Free Air CO2 Enrichment (FACE) for six years. A 15N labelling laboratory study (i.e. in absence of plant N uptake) was carried out to identify the effect of elevated CO2 on gross soil N transformations. The simultaneous gross N transformation rates in the soil were analyzed with a 15N tracing model which considered mineralization of two soil organic matter (SOM) pools, included nitrification from NH4+ and from organic-N to NO3- and analysed the rate of dissimilatory NO3- reduction to NH4+ (DNRA). Results indicate that the mineralization of labile organic-N became more important under elevated CO2. At the same time the gross rate of NH4+ immobilization increased by 20%, while NH4+ oxidation to NO3- was reduced by 25% under elevated CO2. The NO3- dynamics under elevated CO2 were characterized by a 52% increase in NO3- immobilization and a 141% increase in the DNRA rate, while NO3- production via heterotrophic nitrification was reduced to almost zero. The increased turnover of the NH4+ pool, combined with the increased DNRA rate provided an indication that the available N in the grassland soil may gradually shift towards NH4+ under elevated CO2. The advantage of such a shift is that NH4+ is less prone to N losses, which may increase the N retention and N use efficiency in the grassland ecosystem under elevated CO2.
机译:陆地生态系统对大气中CO2浓度升高的反应与其他养分的利用率有关,尤其与氮(N)有关。在这里,我们介绍了已经在自由空气CO2浓缩(FACE)下进行了六年的N限温带草原的土壤N转化动力学的结果。进行了15N标记实验室研究(即在不吸收植物N的情况下),以确定CO2浓度升高对土壤总氮转化的影响。利用15N示踪模型分析了土壤中同时的总N转化率,该模型考虑了两个土壤有机质(SOM)库的矿化作用,包括从NH4 +和从有机N硝化为NO3-的硝化作用,并分析了异化NO3-还原的速率到NH4 +(DNRA)。结果表明,在二氧化碳浓度升高的情况下,不稳定的有机氮的矿化作用变得更为重要。同时,在较高的CO2浓度下,NH4 +固定化的总速率增加了20%,而NH4 +氧化成NO3-的氧化减少了25%。在二氧化碳浓度升高的情况下,NO3-的动力学特征是固定化NO3-增加52%,DNRA速率增加141%,而通过异养硝化产生的NO3-减少到几乎为零。 NH4 +库的周转量增加,再加上DNRA速率增加,这表明在CO2升高的情况下,草地土壤中的有效氮可能逐渐向NH4 +转移。这种转变的优势在于,NH4 +不太容易损失氮,这可能会在二氧化碳浓度升高的情况下增加草地生态系统中的氮保留和氮利用效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号