首页> 外文期刊>Soil & Tillage Research >Nitrogen fertilization and cropping systems effects on soil organic carbon and total nitrogen pools under chisel-plow tillage in Illinois.
【24h】

Nitrogen fertilization and cropping systems effects on soil organic carbon and total nitrogen pools under chisel-plow tillage in Illinois.

机译:施肥和耕作制度对伊利诺伊州耕chi耕作下土壤有机碳和总氮库的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Agricultural soils can be a major sink for atmospheric carbon (C) with adoption of recommended management practices (RMPs). Our objectives were to evaluate the effects of nitrogen (N) fertilization and cropping systems on soil organic carbon (SOC) and total N (TN) concentrations and pools. Replicated soil samples were collected in May 2004 to 90 cm depth from a 23-year-old experiment at the Northwestern Illinois Agricultural Research and Demonstration Centre, Monmouth, IL. The SOC and TN concentrations and pools, soil bulk density ( rho b) and soil C:N ratio were measured for five N rates [0 (N0), 70 (N1), 140 (N2), 210 (N3) and 280 (N4) kg N ha-1] and two cropping systems [continuous corn (Zea mays L.) (CC), and corn-soybean (Glycine max (L.) Merr.) rotation (CS)]. Long-term N fertilization and cropping systems significantly influenced SOC concentrations and pools to 30 cm depth. The SOC pool in 0-30 cm depth ranged from 68.4 Mg ha-1 for N0 to 75.8 Mg ha-1 for N4. Across all N treatments, the SOC pool in 0-30 cm depth for CC was 4.7 Mg ha-1 greater than for CS. Similarly, TN concentrations and pools were also significantly affected by N rates. The TN pool for 0-30 cm depth ranged from 5.36 Mg ha-1 for N0 to 6.14 Mg ha-1 for N4. In relation to cropping systems, the TN pool for 0-20 cm depth for CC was 0.4 Mg ha-1 greater than for CS. The increase in SOC and TN pools with higher N rates is attributed to the increased amount of biomass production in CC and CS systems. Increasing N rates significantly decreased rho b for 0-30 cm and decreased the soil C:N ratio for 0-10 cm soil depth. However, none of the measured soil properties were significantly correlated with N rates and cropping systems below 30 cm soil depth. We conclude that in the context of developing productive and environmentally sustainable agricultural systems on a site and soil specific basis, the results from this study is helpful to strengthening the database of management effects on SOC storage in the Mollisols of Midwestern U.S.
机译:通过采用推荐的管理规范(RMP),农业土壤可以成为大气中碳(C)的主要吸收者。我们的目标是评估氮肥和耕作制度对土壤有机碳(SOC)以及总氮(TN)浓度和库的影响。 2004年5月,在伊利诺伊州蒙茅斯市西北伊利诺伊州农业研究与示范中心进行的一项长达23年的实验中,收集了90厘米深度的复制土壤样品。分别测量了5种N的浓度[0(N0),70(N1),140(N2),210(N3)和280(N)的SOC和TN浓度和库,土壤容重(rho b)和土壤C:N比。 N4)kg N ha-1]和两个种植系统[连续玉米(Zea mays L.)(CC)和玉米-大豆(Glycine max(L.)Merr。)轮作(CS)]。长期的氮肥和耕作制度对SOC浓度和30 cm深度的汇聚影响很大。 0-30厘米深度的SOC池范围从N0的68.4 Mg ha-1到N4的75.8 Mg ha-1。在所有N种处理中,CC的0-30 cm深度的SOC池比CS大4.7 Mg ha-1。同样,氮的含量也显着影响总氮浓度和库。 TN池(0-30厘米深度)的范围从N0的5.36 Mg ha-1到N4的6.14 Mg ha-1。对于耕作系统,CC的0-20 cm深度的TN池比CS的大0.4 Mg ha-1。氮含量较高时,SOC和TN池的增加归因于CC和CS系统中生物量的增加。氮肥浓度的增加会显着降低0-30 cm土壤的rhb值,并降低0-10 cm土壤深度的土壤碳氮比。然而,在土壤深度低于30 cm时,测得的土壤性质均与氮素含量和耕作制度无显着相关。我们得出的结论是,在基于特定地点和土壤的基础上发展生产性和环境可持续的农业系统的背景下,这项研究的结果有助于加强数据库管理对美国中西部Mollisol SOC储存的管理作用的数据库。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号