...
首页> 外文期刊>Smart Materials & Structures >Control of a flexible beam actuated by macro-fiber composite patches: I. Modeling and feedforward trajectory control
【24h】

Control of a flexible beam actuated by macro-fiber composite patches: I. Modeling and feedforward trajectory control

机译:由大纤维复合材料补丁驱动的柔性梁的控制:I.建模和前馈轨迹控制

获取原文
获取原文并翻译 | 示例
           

摘要

This paper considers a systematic approach for motion planning and feedforward control design for a flexible cantilever actuated by piezoelectric macro-fiber composite (MFC) patches. For accurate feedforward tracking control, special attention has to be paid to the inherent nonlinear hysteresis and creep behavior of these actuators. In order to account for these effects an appropriate compensator is applied which allows us to perform the tracking controller design on the basis of a linear infinite-dimensional model. A detailed analysis of the nonlinear actuator behavior as well as the compensator design and the overall experimental validation is presented in the companion paper (Schr?ck et al 2011 Smart Mater. Struct. 20 015016). The governing equations of motion of the hysteresis and creep compensated cantilever are determined by means of the extended Hamilton's principle. This allows us to consider the influence of the bonded patch actuators on the mechanical properties of the underlying beam structure in a straightforward manner and results in a model with spatially varying system parameters. For the solution of the motion planning and feedforward control problem a flatness-based methodology is proposed. In a first step, the infinite-dimensional system of the MFC-actuated flexible cantilever is approximated by a finite-dimensional model, where all system variables, i.e. the states, input and output, can be parameterized in terms of a so-called flat output. In a second step, it is shown by numerical simulations that these parameterizations converge with increasing system order of the finite-dimensional model such that the feedforward control input can be directly calculated in order to realize prescribed output trajectories.
机译:本文考虑了一种由压电宏纤维复合材料(MFC)贴片驱动的柔性悬臂的运动计划和前馈控制设计的系统方法。为了进行精确的前馈跟踪控制,必须特别注意这些执行器的固有非线性滞后和蠕变行为。为了解决这些影响,应用了适当的补偿器,该补偿器使我们能够基于线性无穷大模型执行跟踪控制器设计。随附的论文(Schr?ck等,2011 Smart Mater。Struct。20 015016)中详细介绍了非线性执行机构的行为,补偿器的设计以及整体的实验验证。磁滞和蠕变补偿悬臂的运动控制方程是通过扩展的汉密尔顿原理确定的。这使我们能够以直接的方式考虑粘结的贴片致动器对下层梁结构的机械性能的影响,并生成具有空间变化的系统参数的模型。为了解决运动计划和前馈控制问题,提出了一种基于平面度的方法。第一步,通过有限尺寸模型对MFC驱动的柔性悬臂的无限尺寸系统进行近似,其中所有系统变量(即状态,输入和输出)都可以根据所谓的平面参数化输出。在第二步中,通过数值模拟表明,这些参数化随着有限维模型的系统级的增加而收敛,从而可以直接计算前馈控制输入以实现规定的输出轨迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号