首页> 外文期刊>Smart Materials & Structures >Influence of piston and magnetic coils on the field-dependent damping performance of a mixed-mode magnetorheological damper
【24h】

Influence of piston and magnetic coils on the field-dependent damping performance of a mixed-mode magnetorheological damper

机译:活塞和电磁线圈对混合模式磁流变阻尼器的磁场相关阻尼性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This work presents a 2D simulation study of a mixed-mode magnetorheological (MR) damper in which the influence of the geometric elements of the piston and magnetic coil on the MR damper's performance is investigated by using the Ansoft Maxwell software tool. Four results of the simulation, which are magnetic flux density (B), MR fluid yield stress (tau(0)), tau L-0(a) and W tau L-0(a), are used to compare the performance of the MR damper. Multiplication of the yield stress by the active operating mode length (tau L-0(a)) represents the variable portion of the active (on-state) damping force of the flow mode motion, while the value of W tau L-0(a) represents the active damping force of the shear mode motion. The contribution of each operating mode (shear and flow) is related to the mixed-mode geometry and piston velocity. Therefore, each operating mode is evaluated separately. In this work, a total of 154 simulations are done in which 74, 20 and 60 simulations are conducted to analyse the effect of the piston radius, coil dimensions (width and length) and coil boundary lengths, respectively, on the performance of the MR damper. The simulation results show that increasing the piston radius can increase the W tau L-0(a) value and reduce the. value. For a given area of magnetic coil housing, a greater housing length in the axial direction of the piston can increase the achieved yield stress of the MR fluid and hence consequently the performance of the MR damper. A minimum boundary length is needed around the magnetic coil in order to attain a supreme magnetic field distribution. However, there is an optimised value for axial coil boundary lengths, which are the lengths of the upper and lower mixed-mode areas.
机译:这项工作提出了混合模式磁流变(MR)阻尼器的二维仿真研究,其中使用Ansoft Maxwell软件工具研究了活塞和电磁线圈的几何元素对MR阻尼器性能的影响。仿真的四个结果是磁通密度(B),MR流体屈服应力(tau(0)),tau L-0(a)和W tau L-0(a),用于比较磁芯的性能。 MR阻尼器。屈服应力乘以有效工作模式长度(tau L-0(a))表示流动模式运动的有效(接通)阻尼力的可变部分,而W tau L-0( a)代表剪切模式运动的主动阻尼力。每个工作模式(剪切和流动)的贡献与混合模式的几何形状和活塞速度有关。因此,将分别评估每种操作模式。在这项工作中,总共进行了154次仿真,其中分别进行了74、20和60次仿真,以分别分析活塞半径,线圈尺寸(宽度和长度)和线圈边界长度对MR性能的影响。阻尼器。仿真结果表明,增加活塞半径可以增加W tau L-0(a)值并减小W tau L-0(a)值。值。对于电磁线圈壳体的给定面积,沿活塞轴向方向的较大壳体长度可以增加MR流体达到的屈服应力,从而增加MR阻尼器的性能。为了获得最大的磁场分布,在电磁线圈周围需要最小的边界长度。但是,轴向线圈边界长度(即上下混合模式区域的长度)有一个最佳值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号