首页> 外文期刊>Smart Materials & Structures >Concurrent design of a morphing aerofoil with variable stiffness bi-stable laminates
【24h】

Concurrent design of a morphing aerofoil with variable stiffness bi-stable laminates

机译:变刚度双稳态层压板变形翼型的并行设计

获取原文
获取原文并翻译 | 示例
           

摘要

Morphing systems able to efficiently adjust their characteristics to resolve the conflicting demands of changing operating conditions offer great potential for enhanced performance and functionality. The main practical challenge, however, consists in combining the desired compliance to accomplish radical reversible geometry modifications at reduced actuation effort with the requirement of high stiffness imposed by operational functions. A potential decoupling strategy entails combining the conformal shape adaptation benefits of distributed compliance with purely elastic stiffness variability provided by embedded bi-stable laminates. This selective compliance can allow for on-demand stiffness adaptation by switching between the stable states of the internal elements. The current paper considers the optimal positioning of the bi-stable components within the structure while assessing the energy required for morphing under aerodynamic loading. Compared to a time-invariant system, activating specific deformation modes permits decreasing the amount of actuation energy, and hence the amount of actuation material to be carried. A concurrent design and optimisation framework is implemented to develop selective configurations targeting different flight conditions. First, an aerodynamically favourable high-lift mode achieves large geometric changes due to reduced actuation demands. This is only possible by virtue of the internally tailored compliance, arising from the stable state switch of the embedded bi-stable components. A second, stiff configuration, targets operation under increased aerodynamic loading. The dynamic adequacy of the design is proved via high fidelity fluid-structure interaction simulations.
机译:能够有效调整其特性以解决不断变化的工作条件的相互矛盾的变形系统为增强性能和功能性提供了巨大潜力。然而,主要的实际挑战在于将所需的柔度结合起来,以减少的致动力来实现根本的可逆几何形状修改,同时又需要操作功能所要求的高刚度。潜在的解耦策略需要将分布顺应性的保形形状适应优势与嵌入式双稳态层压板提供的纯弹性刚度可变性相结合。这种选择性的适应性可以通过在内部元件的稳定状态之间进行切换来实现按需的刚度适配。当前的论文考虑了双稳态组件在结构内的最佳位置,同时评估了在气动载荷下变形所需的能量。与时不变系统相比,激活特定的变形模式可以减少驱动能量的数量,从而减少要携带的驱动材料的数量。实施并发设计和优化框架以开发针对不同飞行条件的选择性配置。首先,由于减少了致动需求,空气动力学上有利的高升程模式实现了大的几何变化。这只能通过内部定制的合规性来实现,这是由嵌入式双稳态组件的稳定状态切换引起的。第二种刚性配置以增加的空气动力负载为目标。通过高保真度的流固耦合仿真,证明了设计的动态充分性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号